
 

Abstract— The aim of this paper is to use recent advances in 

the clinical understanding of the temporal evolution of seizure 

burden in neonates with hypoxic ischemic encephalopathy to 

improve the performance of automated detection algorithms. 

Probabilistic weights are designed from temporal locations of 

neonatal seizure events relative to time of birth. These weights 

are obtained by fitting a skew-normal distribution to the 

temporal seizure density and introduced into the probabilistic 

framework of the previously developed neonatal seizure 

detector. The results are validated on the largest available 

clinical dataset, comprising 816.7 hours. By exploiting these 

priors, the ROC area is increased by 23% (relative) reaching 

96.75%. The number of false detections per hour is decreased 

from 0.72 to 0.36, while maintaining the correct detection of 

seizure burden at 75%.  

I. INTRODUCTION 

YPOXIC ischemic encephalopathy (HIE) is the most 

common cause of seizures in the sick full term neonate. 

The incidence of neonatal seizures is generally reported as 

around as between 1-3 per 1000 but may be much higher in 

very preterm babies [1]. In reality, these values are probably 

inaccurate estimates as only about one third of all neonatal 

seizures are clinically visible and many remain undetected in 

the busy Neonatal Intensive Care Unit (NICU) [2]. Failure 

to detect seizures and the resulting lack of treatment may 

result in brain damage and in severe cases, death. A system 

that could automatically detect and annotate seizures on the 

neonatal EEG would be extremely useful for clinicians in 

the NICU. Although a number of methods and algorithms 

have been proposed previously in an attempt to 

automatically detect neonatal seizures [3] – [7], to date their 

transition to clinical use has been limited due to poor 

performance. Navakatikyan et al. [5] reported that their 

system correctly detected 82.8% of the seizure burden (the 

total amount of time the newborn spends in seizure) at a cost 

of 2 false detections per hour. A recent study by Cherian et 

al. [6] reported the correct detection of on average 59% of 

seizure burden at a cost of 0.58 false detections per hour 

(FD/h). With the exclusion of the four most difficult and 

worst performing patients, the number of FD/h was shown 

to be reduced from 0.58 to 0.28.  
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There are two key directions in automated neonatal 

seizure detection. The first follows analytical learning 

principles [8] and focuses on the creation of a set of 

heuristic rules and thresholds from clinical prior knowledge 

[3] – [6]. The resultant detectors analyze EEG using a small 

number of the descriptors from which a decision is made 

using empirically derived thresholds. The second approach 

relies on inductive learning [8] and utilizes statistical 

classifier based methods [7], [9], which employ elements of 

machine learning to classify a set of features using a data-

driven decision rule.  

It is known that good solutions to most practical learning 

problems result from a combination of these two 

approaches. Unlike analytical rules and thresholds, where 

binary decisions are obtained, the classifier-based approach 

often outputs continuous (probabilistic) values and thus 

provides confidence or credibility to the decisions made. 

While working in the classifier domain, prior information 

can easily be introduced using the existing well-defined 

probabilistic framework.  

Domain prior knowledge on neonatal seizures can come 

in different ways. It can come in terms of statistics of 

neonatal seizure spatial locations or estimated patient-

specific history of previous seizure spatial locations [10]. In 

the current study, knowledge about the temporal evolution 

of seizures in neonates with HIE is used to temporally 

weight the output of a seizure detection algorithm. In 

particular, the previous work of our group [11] has shown 

that the distribution of neonatal seizures in time is not 

uniform. In neurologically compromised neonates, seizures 

are more or less likely to happen in a certain period after 

birth. This information is converted in our work into 

probabilistic weights and integrated into a previously 

designed system of neonatal seizure detection.  

II. NEONATAL SEIZURE DETECTORS 

A. Dataset  

The dataset in our work is composed of EEG recordings 

from 18 newborns recruited from the NICU, Cork 

University Maternity Hospital, Cork, Ireland. The patients 

were full term babies ranging in gestational age from 39 to 

42 weeks. All newborns had seizures secondary to hypoxic 

ischemic encephalopathy (HIE). A Carefusion NicOne video 

EEG monitor was used to record multi-channel EEG at 
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256Hz using the 10-20 system of electrode placement, 

modified for neonates. The standard protocol for EEG 

recording in the NICU required the following 9 active 

electrodes: T4, T3, O1, O2, F4, F3, C4, C3, and Cz. Then, 

the following 8 EEG bipolar pairs were used to annotate the 

data: F4-C4, C4-O2, F3-C3, C3-O1, T4-C4, C4-Cz, Cz-C3 

and C3 - T3. All electrographic seizures were annotated 

independently by two experienced neonatal electro-

encephalographers using simultaneous video EEG. The 

combined length of the EEG recordings totaled 816.7 hours 

(median per patient, 48.5h) and contained 1389 

electrographic seizures (median per patient, 53 seizures). 

The dataset contains a wide variety of seizure types 

including both electrographic-only and electro-clinical 

seizures of focal, multi-focal and generalized types. The 

continuous EEG recordings were not edited to remove the 

large variety of artifacts and poorly conditioned signals that 

are commonly encountered in the real-world NICU 

environment.  

B. Automated seizure detection system architecture 

The neonatal seizure detection system is shown in Fig. 1. 

The EEG from the 8 above-mentioned channels was down-

sampled from 256Hz to 32Hz with an anti-aliasing filter set 

at 12.8Hz. The EEG was then split into 8s epochs with 50% 

overlap between epochs. Fifty-five features were extracted 

from each channel which represent both time and frequency 

domain characteristics as well as information theory based 

parameters. Various system architecture choices (such as 

epoch length, epoch shift, features, etc) are detailed in [9]. 

Neonatal seizures can be localized to a single EEG 

channel; thus per-channel annotations are needed to train a 

classifier. For the seizure class, the training dataset consists 

of approximately 20 minutes of EEG per patient for which 

individual channel annotations are available, which sum up 

to M*20 minutes per patient for seizures involved in M 

channels. For example, if a training dataset consists of 17 

patients for which 20 minutes of seizure are transcribed on 

the per channel basis and on average 4 channels are involved 

in every seizure, then for an epoch length of 8 seconds with 

an overlap of 4 seconds, the seizure class of training data 

will consist of 17patients*(1200s/4s) *4channels = 19200 

epochs. It may be more or less depending on the number of 

channels involved in every seizure for every patient. These 

were used to represent a seizure class, while 40000 epochs 

were randomly selected from the non-seizure data for 

representation of the non-seizure class. The training data for 

the classifier were normalized anisotropically by subtracting 

the mean and dividing by standard deviation to assure 

commensurability of the various features. This normalizing 

template was then applied to the testing data.  

The normalized features extracted from each epoch were 

then fed to a support vector machine (SVM) classifier with a 

Gaussian kernel. Nested cross-validation model selection on 

the training data was performed to choose suitable model 

parameters. The outputs of the SVM were converted to 

probability-like values [12] and smoothed with a moving 

average filter. The maximum of the averaged probabilities 

across all channels was computed to represent the final 

support of a seizure. It was then compared to a threshold 

from the interval [0 1]. After comparison, a binary decision 

was taken: 1 for seizure and 0 for non-seizure. The ‘collar’ 

technique was applied last – every seizure decision was 

extended from either side to account for the delay introduced 

by the moving average filter. The system emits a continuous 

pseudo-probabilistic output which allows for selection of a 

desired operating point depending on clinical needs. In [13], 

the system was shown to outperform the existing alternatives 

using various metrics and the standardized performance 

assessment.  

C. Performance assessment and metrics 

In clinical practice, samples of testing patient data are 

never available beforehand in the NICU. It is therefore 

necessary to develop patient-independent neonatal seizure 

detector. For this reason, the leave-one-out (LOO) cross-

validation method was used to assess the performance of the 

system for patient-independent seizure detection [9]. This 

way, all but one patients’ data from the dataset were used for 

training and development and the remaining seizure 

patient’s data was used for testing. This procedure was 

repeated until each seizure patient had been a test subject 

and the mean result was reported.  

The metrics used in this work are epoch-based sensitivity 

and specificity values which are defined as the epoch-wise 

accuracy of each class (seizure and non-seizure) separately. 

Sensitivity corresponds to detected seizure burden, i.e. the 

total amount of time the baby spends in seizure. Seizure 

burden is the most important metric to indicate whether a 

patient should be treated or not [2]. We also report the 

number of FD/h. By thresholding the probability of seizure 

(in the range from 0 to 1), it is possible to report the curves 

of performance in contrast to reporting a performance for a 

single operating point. The area under Receiver Operating 

Characteristic (ROC) curve, which plots sensitivity over 
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Fig. 1.  Neonatal seizure detection system diagram 
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specificity values, is used in this work.  

III. CLINICAL PRIOR 

The process of modeling the clinical priors is shown in 

Fig. 2. First, the temporal density of seizures was calculated 

from the dataset as shown in Fig. 2 (a). The x-axis indicates 

time elapsed after date of birth (DOB). For example, it can 

be seen from Fig. 2 (a) that at approximately 30 hours after 

birth around 40% of monitored patients had seizures. 

Naturally, this data-driven temporal seizure density measure 

needs to be normalized by some credibility function. 

Fig. 2 (b) plots the number of patients monitored versus 

time. From Fig. 2 (b), it can now be explained that the unit 

density in Fig. 2 (a) resulted from the fact that only a single 

patient was monitored at that time. In effect, Fig. 2 (b) is 

used in our work to weight the data-driven seizure density. It 

can be also seen from Fig. 2 (b) that there is not a single 

point in time, relative to the time of birth, where all 18 

patients from the dataset were monitored – at most, 16 

patients were simultaneously monitored (e.g. ~30h after 

birth). Fig. 2 (c) shows the density from plot (a) multiplied 

by the credibility function from plot (b). It can be seen from 

Fig. 2 (c) that the resultant measure follows a skewed 

normal distribution with a long tail. It was decided here to 

approximate the normalized final measure by a skew-normal 

distribution. The implementation proposed in [14] is used in 

our work. Defining
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When shape parameter .=0, the skewness vanishes, and 

the standard normal density is obtained. As . increases (in 

absolute value), the skewness of the distribution increases. 

The sign of . defines whether the distribution is left or right-

skewed. It has been shown in [14] that there is no closed-

form expression available for maximum likelihood estimates 

of the distribution parameters (�, &, and .). For this reason, 

the parameters are manually greedy-searched to get a 

reasonable fit over the data. In our work, �=0.4, &=1.5, and 

.=19 were used (scaled by 105 to fit the actual time axis in 

seconds). The resultant function, normalized to be between 0 

and 1, is shown in Fig. 2 (d) in red.  
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Fig. 2.  Modeling the clinical prior. The x-axis indicates time elapsed after date of birth (DOB). a) Density of seizures. b) The number of monitored patients. 

c) Density multiplied by the number of monitored patients. d) A skew-normal distribution fitting the normalized data-driven clinical priors.  

The modeled priors are used to weight the probability of a 

seizure event. In particular, as shown in Fig. 1, the 

maximum probability of seizure computed across channels 

is multiplied by the corresponding temporal weight.  

IV. RESULTS AND DISCUSSION 

A. ROC area 

The absolute differences in per-patient performance with 

and without temporal priors are shown in Fig. 3. It can be 

seen from Fig. 3 that the separability of seizure and non-

seizure probabilistic activity for most patients increases 

when weighted with the designed prior function. The p-

values of the two-tailed statistical significance test of the 

difference between the two ROC areas [15] indicate that 

only for patients 9 and 16 the proposed priors have no 

statistically significant effects. For the remaining patients, 

the corresponding p-values are close to 0. 

The overall positive effect of the proposed temporal 

weighting of probabilities can be seen through the average 

ROC area across all patients which has been increased from 

95.77 to 96.75; this corresponds to a ~23% relative 

improvement (96.75-95.77)/(100-95.77).  
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It is worth reemphasizing that unlike other studies which 

report performance increases obtained on datasets of several 

carefully selected minutes of EEG [4], the results in our 

study are obtained on the largest available dataset, which 

comprises 816 hours of continuous unedited neonatal EEG, 

and thus these results are stable and significant.  

B. Seizure burden and FD/h 

The contribution of the introduced weights in terms of the 

clinically important metric is shown in Fig. 4. It can be seen 

that the number of false detection per hour is consistently 

lower when exploiting the designed weights for all operating 

points. In particular, the number of FD/h can be reduced 

from 0.72 to 0.36 while maintaining the correct detection of 

seizure burden as high as 75%.  

The provided performance curve not only enables the 

comparison of our system with alternatives but also 

facilitates the comparison among the alternatives which 

report the same metrics. It can be seen from Fig. 4 that 

results reported in [5] and [6] could effectively be thought of 

as belonging to the same curve which is almost equally 

distanced from the curve of our results. It can be concluded 

that the claimed reduction in the number of FD/h in [6] 

comes therefore at a commensurable cost of reduced 

detected seizure burden; although the works in [5 and [6] are 

separated by 5 years of active research. 

C. Future work  

A neurological assessment can be performed soon after 

birth in the neonate and the severity of HIE can be graded. 

Different prior functions can be introduced for each HIE 

grade which will allow more accurate modeling of the 

temporal evolution of the seizure burden. It is also known 

that patient cooling procedures affect seizures in neonates 

with HIE. It is therefore necessary to re-estimate the 

reported priors on a cohort of newborns who are cooled to 

properly reflect the differences in seizure burden 

distributions.  

V. CONCLUSIONS  

A significant improvement in the performance of a patient 

independent neonatal seizure detector was achieved by the 

inclusion of a temporal prior weighting. This temporal 

weighting function was designed from the statistics of 

seizure location distributions relative to time of birth. The 

statistics are calculated from the largest available datasets of 

neonatal seizures. It was shown that the inclusion of the 

reported weighting function in the existing probabilistic 

framework results in the significant increase of the seizure 

detection performance measured by both epoch-based and 

event-based metrics. The designed priors can be exploited in 

existing neonatal seizure detectors.  

0 0.5 1 1.5 2 2.5 3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Detection per Hour

S
e

n
s
iti

v
ity

 

Navakatikyan et al. [5]

Cherian et al. [6]

This study, without priors

This study, with priors

 
Fig. 4.  Sensitivity vs. number of false detection per hour. 
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Fig. 3.  Absolute per-patient differences in ROC areas for the neonatal 

seizure detector obtained with and without using designed clinical priors. 
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