
  

 

Abstract—Automatic methods for food intake detection are 

needed to objectively monitor ingestive behavior of individuals 

in a free living environment. In this study, a pattern recognition 

system was developed for detection of food intake through the 

classification of jaw motion. A total of 7 subjects participated in 

laboratory experiments that involved several activities of daily 

living: talking, walking, reading, resting and food intake while 

being instrumented with a wearable jaw motion sensor. 

Inclusion of such activities provided a high variability to the 

sensor signal and thus challenged the classification task. A 

forward feature selection process decided on the most 

appropriate set of features to represent the chewing signal. 

Linear and RBF Support Vector Machine (SVM) classifiers 

were evaluated to find the most suitable classifier that can 

generalize the high variability of the input signal. Results 

showed that an average accuracy of 90.52% can be obtained 

using Linear SVM with a time resolution of 15 sec.  

 

I. INTRODUCTION 

A chronic imbalance between the energy consumed in 

foods and the energy expended in physical activities is one 

of the leading causes of overweight and obesity. Among 

adults, the prevalence of obesity reached a total of 35.5% in 

2009-2010 in United States whereas prevalence of obesity 

and overweight combined raised up to 68.8% [1]. 

Additionally, obesity in adolescence was strongly associated 

with the risk of developing severe obesity in adulthood [2]. 

These facts clearly indicate that obesity is a problem that 

needs to be promptly and carefully addressed.  

Monitoring of Ingestive Behavior (MIB) of individuals 

under free living conditions is particularly important to 

detect and correct specific patterns of food intake that cause 

weight gain. Current self-reporting methods for dietary 

assessment such as food questionnaires [3], meal diaries, 

food recall [4] and multimedia diaries [5] lead to inaccurate 

measurements of food intake due to subjects are inclined to 

underreport and miscalculate food consumption [6]. 

Consequently, objective and more accurate methods are 
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necessary for monitoring eating behavior.  

Automatic methods of MIB based on wearable sensors 

have been proposed as a potential solution to replace manual 

self-reporting methods. Most of these systems integrate a 

wearable sensor for monitoring physiological changes 

associated with food intake and signal processing and/or 

pattern recognition algorithms for determining when and 

how food is consumed. In [7], an in-ear microphone was 

used to detect characteristic sounds generated during 

chewing and swallowing of food. Two different signal 

processing algorithms were developed to detect food intake 

activity from the acoustic signal with 83.3% detection 

accuracy. Another study implemented an earpad sensor to 

capture air-conducted vibrations originated during chewing 

of food [8]. Data collected from 2 subjects under varied 

environmental conditions was used to develop a pattern 

recognition system that classified intake of four different 

food types with 86.6% accuracy. 

Our research group is working towards the development 

of a non-invasive wearable device for automatic and 

objective MIB in free-living conditions. Our approach is 

based on the monitoring of chewing and swallowing 

activities as indicators of food intake (when, how and how 

much food is consumed) [9], [10]. Swallowing information 

was used in [11] and [12] to create individual and group 

models to detect periods of food intake. Higher detection 

rates were observed for subject dependent models suggesting 

the need for individual calibration. Food intake detection 

through monitoring of chewing alone was introduced in [13]. 

A piezoelectric film strain sensor was used to sense 

characteristic jaw motions during chewing. A food intake 

detection accuracy of 80.98% was achieved by a group 

model based on Support Vector Machines (SVM) that 

included information from 20 subjects collected during 

resting, reading and eating activities. The development of a 

group model eliminated the need for individual calibration.  

The main goal of this study was to create a more robust 

group model that can be suitable for food intake detection in 

free-living conditions. For that reason, more variability was 

added to the chewing signal by collecting signals during 

several daily living activities. Linear and RBF SVM models 

were implemented using time and frequency domain features 

extracted from the filtered signal. Experimental results 

showed that a robust classification model discriminated 

periods of food intake from no intake with an accuracy of 

90.52% with 15 sec time resolution. 
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II. METHODS 

A. Data Collection 

A total of 7 healthy subjects (5 males and 2 females, aged 

18 to 34 years old) were recruited for this study. Subjects did 

not present any dental problem that would hinder normal 

food intake. Each subject participated in three different visits 

during which they performed the following activities:  

a) Talking for 10-min, which was divided into two parts: 

reading aloud during the first 5-min and participating of a 

conversation for the next 5-min;  

b) Walking for 10-min, where subjects walked on a hard 

surface (pavement) during the first 5-min and on a soft 

surface (grass) for the remaining 5-min;  

c) Eating, where subjects had unlimited time to eat an 

entire meal of content and size selected by each participant 

according to their own preferences and  

d) Resting for 10-min, which was also divided into two 

parts: subject sitting quietly for 5-min and browsing the 

internet on a laptop computer for the next 5-min.  

In general, each visit resulted in approximately 50 minutes 

of data and in 2.5 hours of monitored activity from each 

subject. Around 20-30% out of the total collected data 

belonged to food intake whereas the remaining data 

belonged to activities that were labeled as "no intake". These 

activities were selected as they represent the most commonly 

observed activities in a free-living environment.  

A wearable system was used to monitor the subject's 

activities during each experiment. This system comprised a 

jaw motion sensor and a self-report push button. The jaw 

motion sensor was a non-invasive piezoelectric film strain 

gauge sensor (MSI, Inc) that monitored the motion of the jaw 

of each subject during the experiments. Previous studies 

showed that the most suitable location for the sensor is the 

area below the outer ear where jaw motion can be easily 

detected by monitoring changes in the skin curvature [10], 

[13]. Medical adhesive was used to attach the sensor to the 

skin. Collected chewing signal was first buffered with unity 

gain using a ultra-low power operational amplifier (1 GOhm 

differential input resistance) and then amplified using a 

custom-built differential amplifier of gain 2. The resultant 

signal was sampled at 1000 Hz, quantized with 10 bits using 

a portable data logger (Logomatic V3.0, Sparkfun 

Electronics) and then stored into a microSD memory card.  

Subjects were asked to report all instances of food intake 

using handheld push-button, which provided a pulse of 1.0 V 

and 0.5 V for solid and liquid intake respectively. A solid 

food intake instance consisted of three parts: bite, chewing 

sequence and swallows whereas a liquid food intake instance 

consisted of only two parts: sip and swallows (chewing is not 

observed during liquid consumption). Subjects were 

instructed to press and hold the button during each entire 

food intake instance.  Self-report was used to compute the 

true food intake labels for the pattern recognition algorithm. 

Push-button signal was sampled at 10 Hz, quantized with 10 

bits and stored into the microSD using the same data logger. 

Chewing and self-report signals were simultaneously 

acquired with no drift between signals. Top graph of Fig. 1 

illustrates an example of the chewing collected during one 

entire visit whereas bottom plot shows the food intake labels. 

 
Figure 1.  Top: Example of the strain sensor signal collected during one 

visit. Bottom: Food intake labels as reported by subject. 

B.  Classification scheme 

The DC component of the strain sensor signal was 

removed and the resulting signal was normalized with 

respect to the median to adjust differences in signal 

amplitude between subjects. The processed signal was 

divided into non-overlapping epochs of fixed duration. 

Previous studies determined that an epoch of length 30 sec 

presented high food intake detection rate [9][13]. However, 

the shorter the epoch size, the better the time resolution of 

food intake detection. Also shorter epochs would help to 

detect snacking instances which are not usually self-reported. 

For that reason, epoch sizes of 30 sec and 15 sec were 

evaluated in this study in order to improve time resolution. 

The classification scheme assigns a class label Ck ϵ {"no 

intake"; "intake"} to an epoch by classifying the state of 

chewing in the signal as "chewing" or "no chewing". As a 

result, each epoch ei was associated with a label ti ϵ {-1, 1}, 

where ti = -1 and ti = 1 represented a "no intake" and a 

"intake" epoch, respectively. The labels for each epoch were 

derived from the self-report signal. An epoch was labeled as 

ti = 1 if the self-report signal indicated food intake for at 

least 50% of the total epoch duration, and it was labeled ti = 

-1 otherwise. 

Features were extracted from each epoch in order to train 

the classifier. Our previous study analyzed spectral 

differences between "chewing" and "no chewing" signals 

indicating a pronounced difference in the range of 1.25-

2.5Hz [13]. In this study, a higher sampling frequency 

allowed an analysis at higher frequency differences. Fig. 2 

shows the averaged power spectra of the talking period (left) 

and of the chewing period (right). In this case, the frequency 

interval 100-200 Hz presented the largest difference between 
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talking and chewing suggesting that features from that range 

could be used to improve classification performance. The 

reason for this difference is that the sensor is capturing the 

fundamental frequency of voice which could be found in the 

85-180Hz range for adult men and in the 165-255Hz range 

for adult female. 

 
To compute the features, each epoch was filtered using a 

band-pass filter with 1.25-2.5 Hz resulting in a filtered epoch 

ef1. The original epoch enf was also band-pass filtered with 

100-250 Hz cutoff frequencies to give a second filtered 

epoch ef2. A set of 29 scalar features was extracted from each 

filtered epoch ef1 and ef2 and from the non-filtered epoch enf. 

The set of 29 features included time and frequency domain 

features as presented in [13]. The final feature vector 

combined information from ef1, ef2 and enf in linear and 

logarithmic scale. To account for the time-varying structure 

of the chewing process, features from one neighboring epoch 

before and one neighboring epoch after were concatenated to 

the original epoch feature vector to create a final feature 

vector 
2088iF . 

A forward feature selection process [14] was implemented 

to extract a subset with the most relevant features based on 

classification accuracy. In this iterative procedure, the 

feature presenting the highest classification accuracy was 

added to the subset on each iteration. The algorithm stopped 

after no accuracy  improvement was observed. 

A group model incorporating chewing information from 

all subjects to account for the inter-subject variability was 

proposed to detect periods of food intake. Support Vector 

Machines (SVM) is a well-known supervised machine 

learning technique having two valuable properties: 

robustness and high generalization [15]. These properties 

become very important when training group models due to 

the training set encompasses high variability. In this study, 

SVM was the algorithm selected for chewing classification. 

LibSVM software package was used to implement the 

classifiers [16]. Linear and Radial Basis Function (RBF) 

were evaluated as potential kernel functions of the SVM 

classifiers. For the Linear kernel the penalty parameter C was 

optimized through a grid search procedure varying C as C = 

10
n
 for n ϵ (-2, -1, 0, 1). For the RBF kernel, the parameters 

C and gamma value γ were also optimized through a grid 

search procedure varying C as in the Linear case and γ as γ = 

2
n
 for n ϵ (-4, -3, ... ,0, 1, ... , 3).  

Classification accuracy was the metric used to compare 

the ability of the classifiers to discriminate between "food 

intake" and "no intake". Accuracy was defined as the 

average between precision and recall:  
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True positive (T+) was the number of correctly classified 

"intake" epochs, false negative (F-) was the number of times 

that the model failed to classify "intake" and false positive 

(F+) was the number of times the model incorrectly classified 

an epoch as "intake". 

A 7-fold cross-validation was implemented to train and 

validate Linear-SVM and RBF-SVM models. This procedure 

allowed to train the model with data from 6 subjects and 

validate the model with data from the remaining subject. The 

classification accuracy was calculated as the average 

accuracy across all subjects. 

III. RESULTS 

A total of 15 visits from 7 subjects were used to create 

Linear-SVM and RBF-SVM group models. Features from 

the 1.25-2.5 Hz and 100-250 Hz frequency ranges were 

combined into the training dataset. Results from 7-fold cross 

validation indicated that groups models achieved average 

accuracy values greater than 87% as illustrated in Table I.  

 
TABLE I - CLASSIFICATION RESULTS FOR LINEAR-SVM AND RBF-SVM FOR 

TWO DIFFERENT EPOCH SIZES: 15 SECONDS AND 30 SECONDS 

 
Linear SVM 

Epoch size = 15 sec Epoch size = 30 sec 

Presicion 87.98% (± 11.85%) 88.04% (± 11.11%) 

Recall 93.06% (± 5.37%) 87.56% (± 17.57%) 

Accuracy 90.52% (± 5.11%) 87.80% (± 11.57%) 

   

 
RBF SVM 

Epoch size = 15 sec Epoch size = 30 sec 

Presicion 85.85% (± 10.10%) 81.42% (± 12.62%) 

Recall 92.05% (± 6.26%) 94.62% (± 4.06%) 

Accuracy 88.95% (± 4.66%) 88.02% (± 6.31%) 

 

Linear-SVM presented higher accuracy values than RBF-

SVM although the differences were not statistically 

significant. The best performance was achieved by Linear-

SVM with 90.52% average accuracy using an epoch size of 

15 sec. When the epoch size was increased up to 30 sec the 

accuracy of Linear-SVM dropped to 87.80%. Feature 

selection procedure for Linear SVM yielded a total of 17 

relevant features to describe epochs of 15 sec and a total of 6 

features to describe epochs of 30 sec length.  

RBF-SVM classifier showed less that 1% difference in the 

accuracy between epoch sizes. For 15 s epochs, RBF-SVM 

achieved 88.95% using a total of 10 features to represent 

 

Figure 1.  Average power spectra of talking (left) and chewing (rigth) 

shows a difference at 100-200Hz range due to fundamental frequency 

of voice was captured by the jaw motion sensor. 
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signal epochs whereas for 30 s epochs, RBF-SVM achieved 

88.02% accuracy with a feature vector having 6 elements. 

IV. DISCUSSION 

A robust classification scheme was presented in this study 

to discriminate periods of food intake from no intake by 

classifying the state of the chewing signal. Implementation of 

Linear and RBF SVM group models achieved classification 

accuracies higher than 87%, with either 15 s and 30 s time 

resolution. Data used to train such models included high 

inter and intra-subject variability as chewing signals were 

collected from 7 participants when they performed several 

daily living activities: walking, talking, reading, internet 

navigation, food ingestion and resting. The main advantage 

of group models based on SVM was that suitable 

classification performances were achieved requiring no 

individual calibration. The best performance was achieved 

by a Linear SVM model with 90.52% (± 5.11%) accuracy 

with 15s time resolution. The reported accuracy value 

included solid and liquid intake detection which is also an 

advantage of the presented classification scheme.  

When comparing with results from previous studies, the 

system improved in detection performance and in time 

resolution. Our previous study  reported an average accuracy 

of 80.98% for food intake detection using chewing signals 

segmented into 30 sec epochs [13]. The Linear-SVM model 

proposed in this study showed a significant increment in the 

average accuracy up to a value of 90.52%. This result was 

achieved with an epoch sizes of 15 s which would potentially 

allow the detection of short periods of food intake, such as 

snacking. Other approaches also used chewing monitoring to 

detect periods of food intake [7], [8]. Models created in 

those studies achieved accuracies ranging from 83-87% but 

without considering variability caused by daily living 

activities. 

The variability introduced into the training data by 

including several daily living activities may significantly 

affect the ability of the model to detect food intake. The 

number of false positive instances (reflected in Precision 

values) was an indication of whether the model was able to 

generalize for such variability. Higher Precision values were 

observed for Linear-SVM than for RBF-SVM models 

suggesting that  the former models may be more suitable for 

food intake detection.  

Result from the feature selection procedure confirmed that 

the frequency ranges 1.25-2.5 Hz and 100-250 Hz provided 

critical information for food intake detection. In all cases the 

subsets with the most relevant features comprised features 

from filtered (ef1, ef2) and unfiltered (enf) epochs. In addition, 

more information was required to classify chewing instances 

when using 15 s epochs since a higher number of features 

were selected to represent 15 s epochs than 30 s epoch in 

both Linear-SVM models (17 vs. 6 features) and RBF SVM 

(10 vs. 6 features) models.  

The non-intrusive characteristic of chewing sensor plus 

the robust classification scheme presented in this study are 

suitable to be integrated into an automatic ingestion 

monitoring system for long-term applications (24hs) under 

free-living conditions. Additionally, the implementation of a 

group model would allow detection of food intake without 

requiring calibration for each individual. 
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