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Abstract— Gait analysis has been an interesting area of
research for several decades. In this paper, we propose image-
flow-based methods to compute the motion and velocities of
different body segments automatically, using a single inex-
pensive video camera. We then identify and extract different
events of the gait cycle (double-support, mid-swing, toe-off and
heel-strike) from video images. Experiments were conducted in
which four walking subjects were captured from the sagittal
plane. Automatic segmentation was performed to isolate the
moving body from the background. The head excursion and
the shank motion were then computed to identify the key
frames corresponding to different events in the gait cycle.
Our approach does not require calibrated cameras or special
markers to capture movement. We have also compared our
method with the Optotrak 3D motion capture system and found
our results in good agreement with the Optotrak results. The
development of our method has potential use in the marker-
less and unencumbered video capture of human locomotion.
Monitoring gait in homes and communities provides a useful
application for the aged and the disabled. Our method could
potentially be used as an assessment tool to determine gait
symmetry or to establish the normal gait pattern of an
individual.

I. INTRODUCTION
Gait is defined as an individual’s characteristic way of

moving on foot and is described in terms of three planes of
movement: sagittal plane, frontal plane and transverse plane
[1]. It is considered one of the most important measures of a
person’s functional independence. A gait cycle is measured
from the heel-strike of one foot to the next heel-strike of the
same foot [2]. It is composed of several phases and events
which together account for approximately 40% swing and
60% stance [3]. Biomechanics studies performed by [2], [4],
[5] used 3D markers to study the limb movement pattern
during normal gait for men, women and the elderly. The
primary purpose of these studies was to establish a baseline
of a normal gait. The kinematic variables (velocities, accel-
erations and joint angles) were extracted from the recorded
3D data. However, this quantitative study of gait parameters
required setting up laboratories with expensive equipment.
Cumbersome markers were placed on the subject’s limb
segments and were tracked using 3D motion capture systems
(optical or magnetic trackers). This approach has limited the
ability to obtain reliable data in non-laboratory settings.

Recently, the focus has been to develop markerless vision
based motion capture systems to analyze human movement
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for different applications e.g visual surveillance, clinical
analysis, computer animation/games, robotics and biomet-
rics. A review of the early work on approaches in under-
standing human motion and related applications can be found
in [6]. In biometrics, human gait has also been used for
gender and ethnicity recognition [7]. Since the majority of
the movement in the knee, ankle and hip occurs in the sagittal
plane, markerless gait analysis is generally 2D oriented.
Images have also been used for measuring body sway and
identifying footfalls from the gait data [8]. In [9] video data
was used to study foot-ankle complex during stance. Few
studies [8], [10] have focussed on methods based on the
estimation of Center of Mass (CoM) of the body. The major
drawback is that the computation of CoM is very sensitive
to the accuracy of the segmentation of moving body from
the background.

We propose a new method based on image-flow to com-
pute the velocities of different body segments and to identify
the corresponding key image-frames. We base our method on
the fact that human gait is highly periodic, constrained by
human anatomy and reproducible. There are defined phases
of gait whose sequence describes the temporal events leading
to locomotion. While walking, an individual’s head follows a
repeatable sinusoidal pattern (characteristic of moving CoM)
[15]. This may be altered by stride length, degree of joint
range of motion and other limb segment characteristics.
The head/body excursion is maximum at the mid-swing
and minimum at double-support. These invariant transition
points can be detected by extracting the change in the
direction of head velocity. We also use the anthropomorphic
measures from [11] to consider the lower limb segments
and apply image motion models to find the change in the
velocity direction corresponding to toe-off and heel-strike
events. Our method handles the noise in the segmentation
process since we combine the motion of the person together
with the segmented foreground. In the end, we compare a
gait sequence with the Optotrak motion capture system to
establish the validity of our methods.

Section II describes the methodology for finding different
gait events. Section III presents results and validation exper-
iment. Section IV provides the conclusion and future work.

II. METHODOLOGY

We first extract the image frames from the video data. The
background is then subtracted from each image to obtain
the foreground [14]. Morphological operations (erosion and
dilation) are performed on the segmented image to eliminate
noise. The image flow is then computed from the segmented
foreground using the algorithm described in [12]. Image flow
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is the instantaneous velocity vector field for an image of
a moving environment. It corresponds to apparent image
motion between a pair of frames. An example of estimated
normal flow field is shown in Fig. 1a. Flow vectors in
the background are all close to zero, and non-zero value
corresponds to the estimation noise.

A. Double-support and mid-swing extraction

It is known that the height of a human torso approximately
corresponds to 0.52H, where H is the body height [11].
During gait, the instantaneous head and torso velocity can be
approximated, with a high degree of accuracy, by pure trans-
lational velocity. This motion comprises forward translation
of the body, tx, and up/down movement/excursion, ty [15].
We aim to find this motion, Mt = (tx, ty, 0), by virtue of
“voting” over a range of possible motion values using image
flow vectors.

We use the top 52% of the whole body for voting. It counts
the number of flow vectors in agreement with the estimated
motion corresponding to a bin. This is done for a number of
bins (representing possible motions, bin size was 1 degree
by 0.1 pixels) and the bin having the maximum number of
flow vectors gives the instantaneous translational velocity of
the torso. Note that double-support and mid-swing events
occur at the zero value of the instantaneous velocity, i.e. the
minimum excursion occurs when the velocity changes sign
from negative to positive, and the maximum excursion occurs
as the velocity changes sign from positive to negative. An
example of voting technique is shown in the Fig. 1b. The red
peak represents the bin with the highest number of votes.
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Fig. 1: (a) Normal flow estimated for a detected foreground.
(b) Voting using flow vectors in the top 52% of body height.
The maximum is shown in red.

Fig. 2 shows the vertical instantaneous velocity profile
of a subject’s torso for a sequence of 90 frames. The
zero crossings are computed automatically to identify the
consecutive double-support and mid-swing phases of the gait
cycle.

B. Toe-off and heel-strike extraction

Toe-off and heel-strike events can be identified by ob-
serving the instantaneous rotational velocity of the lower
limb segments (shanks). These events occur at zero values
of shank’s rotational velocity. For finding these events, we
consider the lower 28.5% of the body height H as suggested
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Fig. 2: Instantaneous up and down velocities computed for
the torso using voting method. The zero crossings have been
marked by red diamonds.

in [11]. We use a slightly modified version of RANSAC
algorithm [13] to find motion models for the lower limb
segments in each frame. We first divide the foreground into
small, equally spaced overlapping patches to reduce the
overhead of dealing with each flow vector thereby saving
time and reducing complexity. The motion of the lower limb
segments can be described by translation in the sagittal plane,
(tx, ty), and rotation, ω, around an axis orthogonal to the
sagittal plane. The model can be approximated as [12],[

ẋ
ẏ

]
=

[
0 −ω
ω 0

] [
x
y

]
+

[
tx
ty

]
(1)

where (ẋ, ẏ) denote the instantaneous velocity of (x, y).
We compute a motion model, Mtr, for each patch using
Eq. (1) and depending on its error being less than a threshold
value, the patch is marked as good or bad. We automatically
initialize the left and right lower limb boundaries in the frame
close to double support by using their spatial separation and
compute their motion.

We then predict the new position of each pixel in the next
frame (based on the motion models) and estimate new bound-
aries. To tackle the noise introduced by noisy measurements
of flow and motion estimation, the boundaries are adjusted
by applying Principal Component Analysis (PCA) [14] on
the pixels marked as inliers. PCA estimates the orientation
of the leg segments using those pixels. These boundaries are
then used to find new models using the approach given in
Algorithm 1 . Once the models are found, the whole process
is repeated for the next frame. Our approach allows us to
segment and classify the lower body pixels belonging to
either the left or the right limb segment (see Fig. 3b and 3c).
This computation gives us the estimation of instantaneous
rotational velocities of lower limb segments for each frame
of the image sequence.

Fig. 4 shows the instantaneous rotational velocity profiles
of both left and right lower limb segments of a subject
for a single sequence. The zero crossings are computed
automatically and correspond to the toe-off and heel-strike
events of the gait cycle.
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Algorithm 1 RANSAC for estimating motion models
INPUT: Boundary B of current region, Patches Pi, and their
respective motion models mi, i = 1, 2......n, n is the number
of total patches.
OUTPUT: Model M , best describing the motion of all
patches within B.

repeat
Randomly sample two patches pi and pj (within B) for
which the models mi and mj have error less than a
threshold value, t.
Compute a model mc for the combined patch pc.
if mc has error value ≤ t then

Apply mc to all patches inside B and compute the
error for each patch.
Count the total number of patches that have error ≤ t.

end if
until number of iterations ≤ N
Find the model, M that has the largest number of
votes/patches (see Fig. 3a).
return M

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140
X: 76
Y: 141

No. of good patches in agreement to model "y"

N
o.

 o
f g

oo
d 

m
od

el
s

Selecting "k" best models for a given area

(a) Selecting Model

(b)

(c)

Fig. 3: Figures illustrating the working of RANSAC (a)
Selection of a model which is in agreement with majority
of patches. (b) & (c) Two images showing the segmentation
done using RANSAC at different stages in gait cycle. The
first model is shown in green and the second model is shown
in red.

III. RESULTS

We have captured gait data from four subjects, S1-S4,
with different types of shoes and clothing and processed
the data to detect different events of the gait cycle. The
data were recorded in the sagittal plane at 60 frames/second
at resolution 640 × 480 pixels per frame using Point Grey
Dragonfly R©2 color camera. Each subject walked for 18 feet
before being recorded to enable them to reach a consis-
tent walking pattern. Fig. 5 shows the image frames from
sequences S1 and S3, extracted by our algorithm, corre-
sponding to double-support, mid-swing, toe-off and heel-
strike events of the gait cycle. By visual inspection of the
extracted frames, we can say that our results are reasonably
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Fig. 4: Instantaneous rotational velocities computed for the
two lower limb segments using RANSAC method. The
zero crossings have been marked using black and magenta
diamonds.

accurate. We have presented results from sequences S1 and
S3 to establish the robustness of our method under varying
conditions such as gender, clothing (trousers vs skirt), and
shoe type (sneakers vs high heel sandals). We further quan-
tify the accuracy by comparing our results against a well
established 3D marker-based motion capture system.

A. Validation

To establish the validity of our method, we have compared
our results with the Optotrak motion capture system. We
captured a subject’s gait data sequences using video camera
(sequence Sc) and Optotrak markers (sequence So) simulta-
neously. The markers were fixed on the subject’s head and
lower limb segments. The sampling rate for the Optotrak
system was set as 100Hz in the experiment. Different gait
events were found using our technique and Optotrak data.
Tables I and II compare the time of occurrences of all the
identified gait events. The numbers reported in the tables are
in seconds where DS stands for double-support, MS for mid-
swing, TO for toe-off and HS for heel-strike. We have used
linear interpolation to find exact time occurrences of zero
instantaneous velocities for various events.

TABLE I: Table comparing the time of double-support and
mid-swing occurrences (Optotrak, So, vs Video camera, Sc)

DS1 MS1 DS2 MS2
Optotrak 4.254s 4.540s 4.835s 5.125s
Camera 4.261s 4.526s 4.883s 5.122s
Abs. Diff 0.007s 0.014s 0.048s 0.003s

The average error computed over all the gait events is
0.0164 ± 0.0196 seconds. Taking into consideration the
frame rate of the video camera used, the error values are
very small showing that our results are in agreement with the
Optotrak data. This reinforces our approach of using image-
flow-based technique as a markerless system for obtaining
the key events of gait cycle accurately and reliably.
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Fig. 5: Frames corresponding to zero crossings of vertical excursion and lower-limb rotational velocity in sequences S1 and
S3. From left to right: heel-strike right, double-support, toe-off left, mid-swing, heel-strike left, double-support, toe-off right,
mid-swing and heel-strike right.

TABLE II: Table comparing the time of toe-off and heel-
strike occurrences (Optotrak, So, vs Video camera, Sc)

TO1 HS1 TO2 HS2
Optotrak 4.989s 5.317s 4.751s 5.559s
Camera 4.942s 5.311s 4.753s 5.563s
Abs. Diff 0.047s 0.006s 0.002s 0.004s

IV. CONCLUSION AND FUTURE WORK

We have presented a new markerless image-flow-based
technique for identifying different events of a gait cycle
(double-support, mid-swing, toe-off and heel-strike). We
have captured videos of four walking subjects under different
conditions and were able to extract the key frames corre-
sponding to various gait events. We have also compared our
results with a marker-based motion capture system and found
that our results were in agreement with velocities derived
from motion capture data within reasonably high accuracy.
In the future, we plan to work on computing joint angles
and motions of body parts in videos obtained from different
viewing directions. We also plan to extend our methods to
the analysis of anomalous gait patterns. An inexpensive and
universal markerless framework for human gait analysis will
be very useful in applications such as tele-rehabilitation,
monitoring and surveillance.
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