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Abstract— Many work environments require a high level of
continuous and sustained attention of the human operator. This
is particularly demanding in monotonous tasks in stimulus-poor
environments and can lead to performance drops and deficient
production. Here, we explore a novel brain-based approach to
deal with this problem: an online monitor of the operator’s
workload can be used to close the loop of interaction between
the human and the machine. Parameters of a, say, manufactur-
ing plant can be adapted to the momentary cognitive state of its
operator and thereby enhance the working conditions as well as
the production output. The proposed system has its roots in the
vast literature of cognitive science in which neural correlates
of concepts like mental workload have been studied extensively
and in the methods for real-time analysis of brain signals from
brain-computer interface research. Our workload monitor was
developed in experiments under laboratory conditions with ten
participants and subsequently evaluated with six participants
during online operation in a real industrial work environment.
Our results provide evidence for the potential applicability of
the proposed workload monitor in real world environments.

I. INTRODUCTION

Despite the constant progress of automatization in in-

dustrial plants, human operators are indispensable for the

monitoring, inspection and correction of specific procedures

within automatized processes. Operators are required to

maximally adapt to the fast pace of the operating ma-

chines, while keeping work performance constantly high.

Furthermore, contrary to machines, humans are prone to

fatigue and decreased vigilance which leads to errors and

thus to suboptimal work flow. A reliable assessment of the

instantaneous mental workload of the operator can be used

as an adaptive mechanism in human-machine interfaces. In

a self-regulatory manner, states of high workload can be

compensated by a decrease of working speed, while the

detection of low levels of workload may result in a speed

up of the operating machines.

Of particular interest for the detection of workload is

the use of oscillatory activity in the electroencephalogram

(EEG). The human brain is known to exhibit oscillatory

activity in particular frequency bands, which have been

linked to different functions of the brain [1]. Several studies

have tried to make use of these EEG rhythms in order

to assess workload during task engagement and show that
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changes in workload modulate the power of EEG activity

in the θ− (4-8 Hz) and α− (8-12 Hz) frequency bands

[2], [3]. The modulation of those quantities can then be

used as an index for workload. Such indices can be used in

order to achieve adaptive automation and therefore enhance

performance in operator tasks [4]. Other studies have shown

that the amplitude of event related potentials (ERP) such as

the P300 decreases with the number of simultaneous tasks

[5].

The goal of this study was to provide guidance for

the development of a human-machine interface that au-

tonomously self-regulates the work speed according to the

continuous assessment of the operators workload. Another

goal was the utilizability of such a system under real-

life work environments, such as industrial manufacturing

plants. Previous studies have shown that such non-laboratory

environments entail numerous potential sources of noise and

artifacts on the recorded EEG, thus making high demands

on the workload detector system [6]. We therefore chose to

approach the development of a detector system in two parts.

In the first part of this study we performed experiments under

laboratory conditions, mimicking the task demands under

real industrial environments. This allowed us to extensively

explore the technical and algorithmic possibilities for an

EEG-based workload detection, simultaneously disregarding

potential noise sources. In a second part, we tested the

developed workload detector in an experimental facility of a

manufacturing company, thereby fully stressing the system

in its designated operation area.

II. METHODS

A. Experimental Setup

1) E1: Laboratory condition: Ten male subjects partici-

pated in the laboratory experiment (E1). The subjects were

instructed to carry out a task (a catching game - inspired

by the designated industrial work task, see next paragraph)

on a 21-inch touch screen lying on a table in front of them.

Objects randomly tagged with three out of four predefined

colors (multiple colors in one object not allowed, the order

of colors matters) were falling vertically with equal velocity

from random positions at top of the screen, approaching the

bottom of the screen. Using their fingers the subjects were

able to tag (and untag) a bucket positioned at the bottom

of the screen with three out of the four predefined colors

and to move it horizontally along the bottom screen border.

The task was to catch each falling object with the bucket

before it reaches the bottom, ensuring that each time the

bucket was tagged with the same colors and in the same
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order as the catched object. Catching with wrong colors was

considered an error, as well as letting an object hit the bottom

of the screen. The falling speed of the objects was constant

throughout the experiment, however the interval between the

occurrence of each object varied in two different conditions.

In the low workload condition (L) the interval between each

object was constant and chosen such that subjects were able

to accomplish the task with low error rate and reporting the

task as demanding but not stressful. In the high workload

condition (H) the intervals were shorter and varied randomly,

resulting in a reported increased sense of stress and in higher

error rates. Each subject performed four blocks of 24 minutes

each, each consisting of 16 sub-blocks of 90 seconds each of

alternating L and H conditions (the background color shading

in the top panel of Fig. 2 illustrates the structure of one

block). In order to mimic the conditions of an industrial work

place, during the whole experiment a closed loop recording

of a real acoustic scenery at an industrial work environment

was played through speakers at high volume. The touch

screen task was implemented in the open source framework

Pyff [7].

2) E2: Industrial environment: Five male subjects and

one female subject participated in the real-life experiment

(E2). The experiments took place in a test facility of a

manufacturing plant, where an automated system transports

glass flasks on a conveyor belt. The subjects were standing

by to the conveyor system, next to them was a table with a

monitor and four plastic bowls, each containing small chips

of a certain color. They were instructed to take each flask

arriving on the conveyor belt and fill it with three chips of

the three colors as displayed on the monitor, put the filled

flask back on the conveyor belt behind them, and repeat

this procedure with the next incoming flask. An automated

system checked if the flask was filled correctly or not filled

at all. The experiment consisted of four blocks of 24 minutes

each. The first two blocks consisted of 12 sub-blocks of 120

seconds each of alternating L and H conditions. As with the

laboratory experiment, in the low workload condition L the

speed of the conveyor belt was low (30% of the maximum

conveyor speed) such that subjects were able to accomplish

the task without making any errors, while in the high

workload condition H the speed of the conveyor belt was

considerably higher (90% of the maximum conveyor speed),

inducing subjectively perceived stress and an error rate above

zero. In the last two 24 minute blocks the speed of the

conveyor system was changed in either of two ways: 1) Each

time a significant positive or negative change of the workload

was detected by the now calibrated workload detector system

(see II-D) the speed was decreased or increased by 20%,

respectively, or 2) when no workload change was detected

for a predefined duration of 240 seconds, sudden increases

of speed by 40% were automatically enforced in order to test

the validity of self-regulation.

B. Data Acquisition

Both in the laboratory and the main experiment, EEG data

was recorded at 1000 Hz using BrainAmp amplifiers and 64-

channel actiCAP (E1) or 64-channel easyCAP (E2).

C. Data Analysis

1) Class discrimination: After recording, EEG data were

downsampled to 200 Hz and epoched into segments of 3 sec-

onds length. Subsequently channels and epochs containing

artifacts were removed. The data was subsequently bandpass

filtered in the δ− (1-3 Hz), θ− (4-7 Hz), α− (8-14 Hz)

and β−,γ− (15-35 Hz) frequency range and the signed r2

value of class discriminability between conditions L and H

was computed for each channel.

2) Feature Extraction and Classification: For feature ex-

traction, EEG data were downsampled, epoched and band-

pass filtered as described in the last paragraph. In a next

step, using an automated Common Spatial Patterns (CSP)

approach [8] optimal spatial filters with respect to class dis-

criminability were computed for each of the four frequency

bands. Finally, for each frequency band the logarithm of the

mean band power of the two classes were concatenated and

served as features for the calibration of a linear discriminant

analysis (LDA) classifier with shrinkage of the covariance

matrix [9]. In E1 we trained the classifier with the data

from three of the four 24-minute blocks and tested on the

remaining block. In E2 we trained the classifier on one of

the two calibration blocks and tested on the other.

D. The Workload Detector

In order to extract an indicator of the momentary workload

of the subject we chose the following approach: We first

define a time window T over which we expect notable mod-

ulations of the workload to occur. From initial exploratory

analysis we chose T = 45 sec. For any time point t > 2T

during the experiment we then perform a Wilcoxon rank-

sum test of the classifier output samples in the windows

[t − 2T t − T ] and [t − T t]. If the test’s null hypothesis

can be rejected with p < 0.01 (or p < 0.05, alternatively) we

assume that those two classifier output samples come from

distributions with unequal medians and therefore identify a

significant change of workload at time point t. For conve-

nience, we workload detector returns the negative logarithm

of the p-value, multiplied by the sign of the difference of

samples’ medians.

III. RESULTS

We present our results as follows: We first report results

from the spectral analysis of EEG data with respect to class

discriminability and contamination with motion artifacts,

subsequently present offline results of the workload detector

and eventually show results from the online application of

the detector.

A. Spectral Analysis of EEG Data

Previous studies report that different levels of mental

workload are reflected in the modulation of EEG power in

the θ− and α− frequency bands [2], [3], [6]. A corre-

sponding analysis of our data showed only very moderate

discriminability power between conditions L and H for

4793



1 − 3 Hz 15 − 35 Hz
 

 

s
g

n
 r

2−5 0 5

x 10
−3

s
g

n
 r

2
( 

L
 ,

 H
 )

Fig. 1. Scalp topographies of signed r2 values of the band power of the δ−
and β−,γ− frequency bands, indicating the discriminability power of both
bands between conditions L and H. The data shown are the grand average
over all subjects in E1, corrected for multiple comparisons (Bonferroni).

those frequency bands (not shown). However, as Fig. 1

shows, further analysis revealed that the δ− and β−,γ−
frequency band power yield a higher discriminability of the

two workload conditions. The spatial distribution of the r2

values furthermore suggests that they are not a result of

artifacts.

We furthermore point out that EEG power in the 40− 45

Hz band was significantly increased in E2 compared to

E1, thus corroborating the assumption that EEG data in E2

was substantially contaminated with muscle activity due to

extensive motion of subjects during the task.

B. Workload Detector: Offline Validation

As presented in the methods section, for our workload

detection approach we extract features from temporally and

spatially filtered EEG data and use these to train a classifier.

Fig. 2 shows the output of the classifier for two subjects

from E1 and one subject from E2. For subjects ’gaa’ and

’laj’ we observe a clear task-related modulation of the

classifier output, while for subject ’icb’ this modulation is

rather limited. We further see that the classifier output is not

instantaneous with respect to the task condition but rather

lags up to 20 seconds.

The red lines in Fig. 2 show the the workload detector

output, computed as described in II-D. The time points at

which the detector output crosses the α = 0.01 from below

or α = −0.01 from above are considered time points of

significant changes of workload. For subjects ’gaa’ and ’laj’

the the modulation of the classifier output is strong enough to

allow a detection of each transition from either the L- to the

H-condition and vice versa (with the exception of the very

last transition in subject ’laj’). For subject ’icb’, we observe

that the classifier output modulations are weaker, the detector

misses three transitions and produces one false positive (at

approx. t = 920 sec).

Fig. 3 shows for all subjects of both experiments the
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Fig. 2. Classifier output and detection of significant changes in workload
for subjects ’gaa’ and ’icb’ (E1, block 4, training on blocks 1-3) and ’laj’
(E2, block 2, training on block 1). Shaded background colors indicate the
sub-blocks of conditions L (green) and H (red). The classifier output at each
3-sec epoch is shown in dark gray. Shown in solid red is the output of the
workload detector, dashed red lines indicate the significance level α = 0.01.

signed r2 value calculated as the correlation between the

classifier output and the class membership. Given that subject

’icb’ shows the second worst r2 value, the Cout modulations

and workload detector output in Fig. 2 are relatively sound.

Furthermore, the comparison of the group average of the r2

values in E1 (0.25±0.075) and E2 (0.4±0.1) suggests that

the performance of the workload detector did not suffer from

increased artifact contamination of the EEG in the industrial

environment (E2). One might speculate about the reasons

of the increase of average in E2 compared to E1. It could

have psychological reasons related to the more immersive

environment in the real working condition. But it could also

have a more technical reason, like the smaller percentage of

transition periods in E2 due to the increased duration of L

and H blocks.

C. Workload Detector: Online Self-regulation

In E2, after the classifier of the detector had been cal-

ibrated using the features extracted from the data of the

first two blocks, in the two subsequent blocks we aimed

at testing the efficiency of our workload detector as a self-

regulating system in an everyday work task. Fig. 4 shows
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Fig. 3. Signed r2 values for all subjects in E1 (left group) and E2 (right
group), computed as the correlation between the classifier output values of
the fourth (E1) or second (E2) block and their respective class membership
({−1} for condition L, {1} for condition H).
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Fig. 4. Self-regulation of task difficulty via detection of changes in
workload for subject ’laf’. Top: Classifier output (gray), workload detector
output (solid red) and detector significance level α = 0.05 (dashed red).
Bottom: Relative speed of the conveyor belt (w.r.t. maximum speed) at
each time point. Green arrows indicate the time points of externally induced
increases of speed, blue arrows indicate time points of classifier-based self-
regulation of speed.

an exemplary time segment of the last block of subject ’laf’.

At two time points the speed of the conveyor system was

automatically increased by four speed levels (green arrows).

While the hereby induced changes of workload are not

clearly discernable by eye in the classifier output, they were

detected by the detector. In both situations, this lead to a

subsequent two-fold down-regulation of the speed back to the

speed level prior to the enforced change. The very last down-

regulation obviously resulted in a drop-off of the workload

which was counteracted by a subsequent up-regulation of

the speed. In three out of six subjects we frequently observed

such self-regulation epochs that eventually ended in a medial

speed level (data not shown).

IV. DISCUSSION

Previous studies have aimed at using EEG in order to

develop a system that can predict or detect the mental

workload of humans [2], [3], and use such detecting systems

to achieve adaptive automation and enhance performance in

operator tasks [4], [6]. However, the laboratory conditions

of most experiments prohibit to draw conclusions as to

whether such systems can cope with the difficulties arising

from signal contamination due to sources of noise and due

to extensive body motion in everyday work situations. In

this study we presented an approach for the detection of

significant workload changes of subjects operating machines

under industrial environments. In a preliminary laboratory

study we developed a workload detection system based

on a linear classifier that is trained with spectral features

extracted from spatially filtered EEG data. After successfully

testing the system offline, we conducted experiments in a

test facility of a manufacturing plant. Not only did this

expose the system to various sources of noise from numerous

adjacent industrial machines. The experimental task also

required the subjects to constantly move their arms, heads

and torsos, thus perpetually contaminating the EEG with

motion artifacts. Despite exposure to such motion artifacts

and other corrupting sources of noise, we show that our

detector system is very robust, yielding workload detection

results that are in the same range of goodness as those

from the laboratory experiment. We find that our approach

provides a means of utilizability as a self-regulation system

in industrial work environments, potentially serving as a tool

for the optimization of work flow [5]. Ultimately, this goes

without saying that the development of any such system must

embrace and deal with ethical debates concerning the risk of

labor exploitation for the sake of economic optimization.

ACKNOWLEDGMENT

We thank Mr. Walter, Mr. Hoffmann, Ms. Gast and Mr.

Welz of Siemens AG for the close cooperation in this project

and for the opportunity to perform experiments in the Smart

Automation research facility.

REFERENCES
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