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Abstract— The relevance of psychophysiological measure-
ments for affective computing and emotion analysis applications
has been widely recognized. However, and although several
authors have studied the informative content of parameters
derived from cardiovascular and other modalities, feature
extraction remains an open topic in the field. This is particularly
relevant in scenarios where the autonomic nervous system
triggering stimuli are unknown. In this paper, we analyze a set
of features extracted from multimodal biosignal data, applicable
to the assessment of psychophysiological load in unconstrained
settings. Experimental evaluation is performed on real world
data, collected both from control subjects and subjects with a
strong clinical background, in a context of questionnaire-based
clinical history reporting. The devised feature set has shown
promising properties, making it prone to complement the more
tradicional measurements.

I. INTRODUCTION

Although the application of biosignals to the study of
emotion and psychophysiology can be dated back to the early
20th century, there are still few well-established indicators
targeted at psychophysiological load assessment over time
[1]. Moreover, while cardiovascular and respiratory measure-
ments have been inherited from the medical domain, where
they are extensively covered, measurements extracted from
other biosignals are still the focus of ongoing research; an
example of these are the Skin Conductance Level (SCL)
and Skin Conductance Response (SCR), together referred
to Electrodermal Activity (EDA) or Galvanic Skin Response
(GSR).

In general, feature extraction is still an open topic in the
field. This aspect is even more meaningful when researchers
are targeting non-intrusive sensing and wearability, and when
data is acquired in scenarios where there is little insight about
the affective eliciting or triggering stimulus. For example,
whereas the ECG can provide highly detailed information
on the different waveform complexes P-QRS-T, it introduces
constrains in terms of the acquisition setup, as the sensor
placement is generally performed at the chest level, and it
requires conductive gel or paste [2]. Also, in experiments
where the occurrence of the stimulus is known, a fine tuned
analysis of the biosignal responses can be performed, which
is not always the case.
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Over the years several features have been proposed in
the literature, and extensively used in psychophysiological
studies for Autonomic Nervous System (ANS) activity as-
sessment. The comprehensive review work by [3] and refer-
ences therein, highlights the autonomic measurements found
in studies on emotion, and also the need to find consistent
autonomic response indicators. In this paper we present
an overview and study, on the applicability of multimodal
biosignal feature extraction as an aid for psychophysiological
changes evaluation.

Tests are performed in a real-world case of monitoring
subjects during questionnaire-based clinical history assess-
ments, which is particularly challenging, since the subjects
browse freely through their memoires, resulting in a low
traceability between a stimuli and its psychophysiological
response. The rest of the paper is organized as follows:
Section II details the feature set used in our study; Section
III describes the statistical analysis of the application to real-
world data; and Section IV outlines the main conclusions.

II. FEATURE EXTRACTION

The ANS activity has contributions from two intercon-
nected components: psychological and physiological. The
former is related with the intrinsic behavioral and affective
dimensions of the subject; the latter has to do with the
physical manifestations generated in response to a change
in the affective state of the subject, or perceived when an
external affective triggering stimulus occurs [1]. While the
psychological component is more difficult to assess per se,
with wearable and non-intrusive sensing techniques several
electrophysiological signals exhibit manifestations related to
changes in the subjects’ affective state [4], [5], [6].

We focused on the acquisition of multiple biosignal modal-
ities, and on studying the features typically extracted from
them. Due to the non-intrusiveness and usability require-
ments of our application scenario, a set of wearable sensors
for cardiorespiratory and ANS assessment was used, namely:
Blood Volume Pulse (BVP); Respiration (RESP); and EDA.
The raw BVP signal is bandpass filtered with a [1 − 8]Hz
passband, using a 4th order filter, for SCR analysis, the
raw EDA signal is lowpass filtered with a 0.25Hz cutoff
frequency, using a 2nd order filter, and the raw RESP data
is bandpass filtered with a [0.10 − 0.35]Hz passband, also
using a 2nd order filter. For all signals, a Butterworth filter
design and a zero-phase digital filter are used [7], [8].

From the filtered BVP data, the instant Heart Rate (HR)
is determined as the inverse of the Inter-Beat Interval (IBI),
as described in Equations 1 and 2.
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te[n]te[n-1]

Fig. 1. Respiration sensor data. The filtered RESP signal is presented as a
solid line, while the increase of the instant respiratory rate RR corresponds
to the dashed line; n denotes the nth respiratory cycle, and te[n] denotes
the time instant in which the nth expiratory part of the respiration cycle
begins.

HR[n] =
1

IBI[n]
, (1)

where

IBI[n] = tB [n]− tB [n− 1], (2)

and tB [n] is the nth heartbeat time instant. We use HR
values to compute the Heart Rate Increment (HRI) as the
absolute value of the backward difference (Eq. 3 and 4),
which enables us to assess the stability of the heart rate
during a time interval of variable length. Figure 2 depicts
annotated BVP sensor data for visual reference.

HRI[n] = |∇HR[n]|, (3)

where

∇HR[n] = HR[n]−HR[n− 1] (4)

An analogous calculation is performed for RESP data,
where the instant Respiration Rate (RR) is derived as the
inverse of the total respiratory cycle duration, as expressed
in Equation 5. Figure 1 depicts annotated RESP sensor data
for visual reference.

RR[n] =
1

te[n]− te[n− 1]
, (5)

where te[n] is the nth expiratory cycle time instant.
From the SCR data, we determine the nonspecific skin

conductance response rate (nSRR), as the inverse of the SCR
events interval, as described in Equation 6:

nSRR[n] =
1

tSCR[n]− tSCR[n− 1]
, (6)

tB[n]tB[n-1]

HRI[n]

HR[n]

Fig. 2. Blood volume pulse sensor data. The filtered BVP signal is
presented as a solid line, while the instant heart rate HR corresponds to
the dashed line; n denotes the nth heartbeat event, tB [n] denotes the time
instant in which the nth event occurred, and HRI denotes the heart rate
increment between the nth and nth − 1 events.

where tSCR[n] is the onset time of the nth SCR event. The
SCR events are detected as zero-crossing transitions from
negative to positive, as expressed in Equation 7):

tSCR = {n ∈ N : ∇sgn(∇SCR[n]) == −2}, (7)

tSCRp = {n ∈ N : ∇sgn(∇SCR[n]) == 2}, (8)

with tSCR being the SCR onset time, tSCRp being the
SCR peak time, and

sgn(x) =

 1 if x > 0
0 if x = 0 .
−1 if x < 0

(9)

From these measurements, typically reported in the lit-
erature [3], additional features are extracted. Namely, from
the SCR events we extract the rise time SCRtr[n] =
tSCRp[n]− tSCR[n] as the difference between the peak and
onset times of the nth SCR event, the skin conductance
event amplitude (SRA) as the difference between the SCR
amplitudes at the onset and peak time instants (Eq. 10),
the overal maximum SRA ↑ and minimum SRA ↓, SRA
values, and the difference SCR l between the absolute
maximum and minimum values of the SCR signal. Finally,
we determine the SCL trend SCL± (Eq. 11), which provides
an indicator of wether an aroused or relaxed trend was
predominant. Figures 3 and 4 depict annotated SCR sensor
data for visual reference.

SRA[n] = SCR[tSCRp[n]]− SCR[tSCR[n]], (10)

SCL± (n) =

{
1 if tSCR↑[n] > tSCR↓[n]
−1 if tSCR↑[n] < tSCR↓[n]

(11)
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Fig. 3. Skin conductance response data. The filtered EDA data is presented
as a solid line; n denotes the nth skin conductance event, tSCR[n] denotes
the onset time of the nth event occurred; the description for the remaining
events can be found in Table I.

SCR±=-1

SCR±=+1

Fig. 4. Skin conductance trend. The filtered EDA data is presented as a
solid line; n denotes the nth skin conductance event, and SCR± denotes
the skin conductance trend as described Table I

Table I summarizes the full feature set, together with the
corresponding units.

III. RESULTS

We performed a statistical evaluation of the extracted
features on real-world data collected in a context of clinical
assessment based on questionnaires, with the purpose of
detecting changes between parts of the questionnaire with
different psychophysiological load. This is a particularly
challenging scenario for techniques normally found in the
literature, as the subject does not have any constrains during
the completion of the task, and therefore there are several
unknown aspects, such as the time for completion is not
defined, and a clear indication of the occurrence of any trig-
gering stimulus that might change the affective state of the
subjects. The data was collected on two groups of subjects:
one clinical group with a severe clinical background; and a

TABLE I
FEATURES EXTRACTED FROM THE MULTIMODAL BIOSIGNAL DATA.

Modality Feature Units Description
RESP RR cycles/minute Instant respiratory rate

BVP HR beats/minute Instant heart rate
HRI beats/minute Heart rate increment

EDA

nSRR events/minute Instant SCR event rate
SCRtr seconds Difference between the

SCR onset and peak time
instants

SRA nS SCR signal amplitude dif-
ference between the onset
and peak time instants

SCR ↑ uS Maximum SCR amplitude
SCR ↓ uS Minimum SCR amplitude
SCR l uS SCR ↑-SCR ↓
SCL± n.a. Skin conductance level

trend

control group without any known, highly charged, clinical
history.

A total of 34 control subjects and 15 subjects with a strong
clinical background participated in the experiment, where
they were asked to respond to a questionnaire administered
by a psychologist. The questions were organized to provide
three distintive moments: a neutral phase, where the subject
would provide general characterization information such as
age, gender, work status, throughout seven questions (mo-
ment 1); a provocative phase, where a mathematical problem
of numerical subtraction was placed (moment 2); and a
clinical background report phase, where the differentiated
emotional responses were expected, and which consisted
in seventeen questions related to medication, reaction to
the diagnosis, life events, among others (moment 3). The
neutral phase targeted the definition of a baseline for the
different measurements, while the provocative phase targeted
the comparison between a stimuli period that was not related
to the clinical history reporting, and the psychophysiological
reactions arising from the clinical history reporting itself.

Prior to start responding to the questionnaire, the subjects
were instrumented with the measurement apparatus; the BVP
sensor was placed on the middle finger, while the EDA
sensor was placed on the third phalange of the index and
ring fingers, both on the non-dominant hand. The RESP
sensor was placed around the thorax and fastened to a point
where it would be tight to the subject’s chest without causing
discomfort. The sensors have embedded signal conditioning
circuitry and amplification, and the analog-to-digital conver-
sion was performed with a wireless data acquisition unit.
Additional information about the sensors and acquisition
hardware can be found at the manufacturers website [9].

Table II outlines the statistical outcomes for the extracted
features in each phase of the questionnaire. As we can
observe, the more traditional measurements such as RR and
HR have shown little inter-/intra-group informative content;
in general, the measurements derived from the SCR signal, as
the SRA and SCR± have shown more significant outcomes,
as well as the HRI . The control group has shown higher
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TABLE II
EXPERIMENTAL RESULTS FOR THE EXTRACTED FEATURES (µ± σ).

Group Moment RR HR HRI nSRR SCRtr SRA SCR↑ SCR↓ SCRl SCR±

Control

1 13.165±
0.745

84.563±
10.015

12.869±
8.863

7.457±
2.575

5.064±
1.699

28.939±
16.320

0.068±
0.052

0.005±
0.009

0.151±
0.128

−0.212±
0.977

2 12.318±
0.954

86.219±
10.796

12.248±
8.328

7.272±
1.963

3.890±
1.774

26.501±
21.388

0.065±
0.075

0.005±
0.009

0.158±
0.118

0.500±
0.866

3 12.754±
0.418

84.671±
9.097

12.739±
8.017

6.975±
2.374

6.185±
3.607

27.402±
14.217

0.079±
0.052

0.003±
0.006

0.160±
0.107

−0.182±
0.498

Clinical

1 13.199±
0.474

79.000±
6.397

6.561±
6.065

6.658±
1.733

5.400±
2.252

16.886±
9.126

0.056±
0.042

0.001±
0.005

0.117±
0.078

−0.125±
0.992

2 12.075±
0.695

81.545±
3.950

4.304±
6.408

6.834±
1.414

3.715±
1.315

18.739±
9.135

0.039±
0.031

0.005±
0.009

0.120±
0.098

0.250±
0.968

3 12.719±
0.457

80.348±
7.929

8.060±
5.908

6.559±
1.714

6.826±
2.327

28.994±
6.993

0.077±
0.035

0.011±
0.023

0.171±
0.084

−0.065±
0.518

HRI throughout the different moments when compared to
the clinical group, furthermore, between moments 2 and
3, the clinical group shows a more stable trend, while the
control group exhibits a higher variation.

On average, the SRA has revealed a consistent increase
throughout the different moments in both groups, although
on the clinical group the SCR events are on average of
lower amplitude. Another interesting finding was the SCR l
feature, which enables us to see that in both groups, the
moment 3 was the one that led to higher SCR amplitude
variations throughout the test. Furthermore, combined with
the SCR± feature, it allows us to conclude that while for
the control group, moment 3 is a strongly low arousal period
(highly negative SCR±), for the clinical group it is typically
still a high arousal period.

IV. CONCLUSIONS
Feature extraction is currently a highly active research

topic in the field of biosignals, with the purpose of obtaining
additional insight about the subjects both in the physical and
psychological dimensions. In the field of psychophysiology,
there are multiple modalities and features already well de-
scribed in the state-of-the-art, generally applicable to specific
experiments and well defined laboratory settings. Question-
naire based assessments are still an important assessment
instrument in psychological evaluation and profiling; how-
ever, unlike well-defined settings, in this case the triggering
stimuli are not easy to identify, and the administration has a
highly unrestrained nature.

This poses several problems related to the analysis of
the typically used features. Our work describes a statistical
analysis and evaluation of a feature set extracted from
wearable biosignal measurement sensors, with the goal of
determining which features could be more promising to
assess the subjects psychophysiological load while partici-
pating in questionnaire based assessments. We have analyzed
a subset of standardized features commonly found in the
literature, and evaluated also an additional set of derived
features derived both from cardiac an electrodermal activity
data.

Experimental results performed with a control and a clini-
cal group in a real-world setting have shown that, while some

of the standard measurements do not exhibit clear distinctive
trends between both groups, some of the features addressed
in our work are able to provide additional informative
content. Future research work will focus on further validating
the described features, and on their clinical interpretation
within a psychophysiological framework.
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