
  

 

Abstract— The purpose of this study is to examine brain 

activities of participants solving mental math problems. The 

research investigated how problem difficulty affected the 

subjects’ responses and electroencephalogram (EEG) in 

different brain regions. In general, it was found that solution 

latencies (SL) to the math problems increased with difficulty. 

The EEG results showed that across subjects, the right-central 

beta, left-parietal theta, left-occipital theta and alpha, 

right-parietal alpha and beta, medial-frontal beta and medial 

central theta power decreased as task difficulty increased. This 

study further explored the effects of problem-solving 

performance on the EEG. Slow solvers exhibited greater frontal 

theta activities in the right hemisphere, whereas an inverse 

pattern of hemispheric asymmetry was found in fast solvers. 

Furthermore, analyses of spatio-temporal brain dynamics 

during problem solving show progressively stronger alpha- and 

beta-power suppression and theta-power augmentation as 

subjects were reaching a solution. These findings provide a 

better understanding of cortical activities mediating math-based 

problem solving and knowledge acquisition that can ultimately 

benefit math learning and education. 

I. INTRODUCTION 

This study explores how individuals solve math problems – 

both at the behavioral and neurocognitive level. Researchers 

in the field of problem solving have drawn a distinction 

between search and insight. In search-based strategies, a 

solution to a problem is achieved through systematic, analytic 

evaluation and transformation of problem states. On the other 

hand, though, a problem may be solved through sudden 

insight, leading to a phenomenon known as an “Aha!” 

experience. In such cases, the problem solver often has little 

awareness of the mental work that led to the solution. The way 

humans solve problems through insight is an intriguing and 

important topic. However, there has been relatively little 

research done in this area, partly due to the difficulty in 

finding suitable problems. Unlike existing insight research 

based on anagrams, riddles, and other language puzzles, this 
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study employs math problems that offer the opportunity to 

manipulate task difficulty in a well-controlled fashion. 

This study aims to examine neural dynamics of participants 

solving intellectually challenging math problems. To do so, 

this study utilized electroencephalogram (EEG), which 

reflects brain electrical activity with millisecond temporal 

resolution. EEG has been widely used to study cognitive 

processes of the brain. Previously, studies have shown that 

EEG power in the theta band (4-7 Hz) increases with greater 

levels of mental effort or cognitive challenge [1][2]. Osaka 

reported that the peak alpha (around 10 Hz) frequency of the 

EEG power spectrum increased significantly above resting 

level while participants performed arithmetic tasks [3].  The 

frequency shift increased as the difficulty increased.  In a 

related study involving a visual scanning task, Gundel & 

Wilson found that right parietal alpha and beta activities 

decreased in inverse relation to task difficulty [4].  At present, 

it is poorly understood how EEG brain dynamics are 

modulated with greater demands on insight and search 

resources engendered by increasing problem difficulty.  

Further, by studying the relationship between EEG and 

elements of task performance, such as solution latencies (SLs), 

it is possible to characterize for the first time variability across 

individuals in neurocognitive systems recruited to solve math 

problems. 

II. METHODS 

A. Subjects 

Eleven volunteers (9 males, 2 females, age: 15 – 49 years) 

with normal or corrected-to-normal vision were paid to 

participate in this math problem-solving experiment, which 

was approved by the Institutional Review Broad of University 

of California San Diego. Volunteers did not consume any 

alcohol, caffeine, or tobacco for 24 hours before their 

experiments. Volunteers were informed of the experimental 

procedure and written consent was obtained from each 

individual prior to the experiment.  

B. Experiments  

This study adopts an intellectually challenging game that 

aims to help sharpen students’ skills in problem solving, 

mental math, and patterning. In each trial, four single-digit 

numbers appeared on a computer screen. Participants were 

asked to combine the numbers through basic operations 

(addition, subtraction, division, multiplication) such that the 

final solution equaled twenty-four. For example, a trial with 

the numbers 1, 7, 1, 2, could yield the following possible 

solution: 1+7=8, 2+1=3, 3×8=24. Problems varied in 
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difficulty (three levels, level 1 being the easiest and level 3 

being the most difficult), but participants were unaware of the 

difficulty of each problem. Upon reaching a solution, 

participants pressed a button immediately without taking any 

time to verify their solutions and then verbally described their 

solutions to a co-present experimenter. They then pressed 

another button whenever they were ready to start the next 

problem. This self-paced experiment lasted one hour.  

C. Data collection 

1) Behavioral data:  Stimulus onsets and participants’ button 

presses were recorded and synchronized with their EEG data. 

2) EEG data: EEG measurements provide a non-invasive 

method for assessing the voltage differences of scalp 

potentials to examine brain dynamics during math problem 

solving. In this study, 128-channel EEG data were amplified 

(BioSemi ActiveTwo EEG system), referenced to the 

CMS-DRL ground, and sampled at 256 Hz.    

D. Data analysis 

1) Behavior data: In most of the trials, the subjects arrived at 

correct solutions. Thus, task performance was mainly 

characterized by solution latency (SL), which was defined as 

the time between the stimulus onset and the button press to 

indicate solution readiness. All incorrectly solved trials were 

removed from further analysis.  

2) EEG data: The acquired EEG signals were first inspected 

to remove poor-quality EEG channels and trials that were 

heavily contaminated by movement artifacts. The remaining 

EEG signals underwent Independent Component Analysis 

(ICA, [5][6]). ICA is now a widely-used statistical technique 

to find linear projections of the EEG data that maximize the 

mutual independences of estimated components, and has been 

proven as an effective technique to remove EEG artifacts 

arising from eye blinks, eye movement and muscle activities 

[7]. EEG signals were analyzed using MATLAB (The 

Mathworks, Inc.) and the open source toolbox, EEGLAB 

(Swartz Center for Computational Neuroscience, University 

of California San Diego, La Jolla, CA; 

http://www.sccn.ucsd.edu/eeglab). 

Fourier transform (STFT) with non-overlapping 1-s Hanning 

window was then applied to the 2-sec artifact-corrected EEG 

data immediately before button responses to extract the 

power spectral density estimates in three frequency bands, 

including θ (4-7 Hz), α (8-13 Hz) and β (14-30 Hz) over 12 

scalp sites (F3, F4, C3, C4, P3, P4, O3, O4, Fz, Cz, Pz and 

Oz) for the correctly solved trials.  

To examine temporal brain dynamics in spectral changes 

during problem solving, this study employed a visualization 

tool known as Event-Related Spectral Perturbation (ERSP), 

proposed by [8]. For each channel, EEG time series during 

problem solving was transformed into a spectrographic image 

in a frequency range between 2 and 30 Hz. Spectrographic 

images were composed into mean ERSP images by 

converting to log power, averaging across trials, and 

subtracting the mean log power derived from the 2-s 

pre-stimulus baseline period of the same trials. Because 

solution latencies to the mathematical problems varied widely 

across trials and subjects, a linear time-warping procedure 

was applied to the power spectral density of each trial to align 

the duration of each trail to the median latency. For detailed 

procedure of time-warping, please see the on-line tutorial at 

http://www.sccn.ucsd.edu/eeglab. 

This study also assessed the hemispheric asymmetry of EEG 

power using the laterality index, which is computed by 

subtracting the EEG band power in the right hemisphere  

from the band power in the left  hemisphere and dividing by 

the sum of these two values (LH – RH / LH + RH). The EEG 

band power was averaged from the data collected during the 

time between stimulus presentation and solution readiness, 

indicated by the subject pressing the button. Less EEG power 

in one hemisphere relative to the other reflects greater relative 

activation in that hemisphere [9].   

4) Statistical analyses: To assess the changes in SL under 

different performance levels across two groups, Wilcoxon 

rank sum test was used to assess the statistical significance of 

the differences of the SL at different performance levels. The 

level of significance was set at p < 0.05. 

III. RESULTS 

A. Effects of Task Difficulty on Subject Performance 

 
Fig. 1. (A) Distributions of solution latencies to problems at intermediate 

difficulty. (B) Solution latencies of the problems with increasing difficulty 
levels. Level 1 is the easiest and level 3 is the most difficult problems. 

Statistical test results are noted as * p < 0.05; ** p < 0.01; *** p < 0.001. 

This study first examined the performance levels of 

subjects, which was determined by their solution latencies. 

The quantity of problems solved within an hour varied widely 

(66-188), but since this was a self-paced experiment, sheer 

quantity of correct items might not be a good index of task 

performance. We thus focused on solution latencies to the 

math problems as a metric for characterizing task 

performance. Fig. 1 (top panel) shows the distribution of SLs 

at level 2. Two of the subjects performed considerably more 

slowly than the remaining subjects (mean SL: 27±24s vs. 

7.6±7.9s), especially on more difficult problems (level 3, not 
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shown). In light of the large performance variability, the 

subjects were divided into two groups, fast and slow problem 

solvers. We then explored the effects of task difficulty on the 

SL for each of these groups. Fig. 1 (lower panel) shows the 

solution latencies of the problems with increasing difficulty 

levels. As expected, SL in general increased with task 

difficulty in both subject groups (p < 0.001, as determined by 

Wilcoxon rank sum test, except Level 2 versus Level 3 in 

slow solvers).  

B. EEG Correlates of Task Difficulty 

The next focus was the effects of task difficulty on the EEG 

power in different frequency bands and at different scalp 

locations. Fig. 2 shows the EEG band power in response to 

math problems at different difficulty levels. The EEG band 

power was computed from the data between 2.5 and 0.5 

seconds prior to the button press and normalized to the resting 

spectra by subtracting the logarithmic EEG spectra at resting 

from the EEG power at performance. Only consistent changes 

in EEG band power across subjects are plotted in the figure. 

In most of the subjects, the right-central (C4) beta, 

left-parietal (P3) theta, right-parietal (P4) alpha and beta, 

left-occipital (O3) theta and alpha, medial-frontal (Fz) beta 

and medial central (Cz) theta power decreased as the task 

difficulty increased.  

 

Fig. 2. EEG band power as a function of increasing task difficulty across 

different scalp locations. Only consistent band power changes across subjects 

are shown here. 

C. EEG Correlates of Task Performance 

Next the relationship between task performance and EEG 
dynamics across different scalp locations was examined. Fig. 
3 shows the frontal theta asymmetry of SL-sorted subjects 
solving math problems with intermediate difficulty. Slow 
problem solvers exhibited greater frontal theta activities in the 
right than in the left hemisphere (indicated by the negative 
laterality index value), while the fast problem solvers 
exhibited either no lateralization or relatively greater theta 
power in the left than in the right hemisphere. The two subject 

groups did not exhibit any appreciable differences in the EEG 
power in other frequency bands or at scalp locations.  

 

Fig. 3. Ratio of frontal theta power in the left and right hemispheres (LH – 
RH / LH + RH). Power (in dB) is plotted on the y-axis. Positive values 

indicate greater power in the LH versus RH; negative values indicate the 

reverse. Subjects are sorted in ascending solution latency (slow solvers on the 
right). 

D. EEG Dynamics during Mathematical Problem Solving 

 

Fig. 4. Event-related spectral activities obtained from eight scalp recording 

sites between stimulus presentation and solution readiness. Power (in dB) is 

color coded with increases up to 5 dB in red and decreases down to -5 dB in 

blue relative to the pre-stimulus baseline. Time is plotted on the x-axis in 
1000 ms increments. Frequencies (2 to 30 Hz) are plotted on the y-axis (high 

to low). 

Event-related spectral perturbations (ERSP) were employed 

to explore the temporal dynamics of the EEG during 

mathematical problem solving. Fig. 4 shows the averaged 

ERSPs from the nine fast solvers at eight representative scalp 

locations for intermediate-level problems (level2). The values 

used were from the data collected between the times of 

stimulus presentation and solution readiness. The vertical 

lines at the right edge of each plot represent the moment of 

button press, indicating readiness to give a solution. A 

broadly distributed reduction in alpha and beta activities is 

visible throughout most of the epoch. Around five seconds 

before readiness to state a solution, a progressive 

event-related synchronization (ERS) in the theta frequency 

range is visible over fronto-central recording sites.  
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IV. DISCUSSION 

In this study, EEG was recorded as healthy adults solved 

mental math problems. When participants were sorted 

according to solution latency to problems of intermediate 

difficulty, the fast problem solvers exhibited greater 

left-frontal theta activity while the slow problem solvers 

showed greater right-frontal theta activity. Research on insight 

problems has implicated the right hemisphere in diffuse 

attention [10], unconscious processing [11], and broad 

semantic representation [12][13].  These aspects of cognition 

are thought to contribute to the restructuring necessary to 

connect problem elements in such a way that an “Aha!” 

solution is suddenly achieved. By analogy, the left or right 

hemispheric dominance of theta ERS across Math24 players 

may reflect preferences for distinct problem solving styles. 

Fast problem solvers may have developed efficient 

search-based strategies, whereas slow solvers may have relied 

more on insight-based approaches. 

In regards to the effects of task difficulty on the topographic 

EEG power, right parietal alpha and beta activity were found 

to consistently become attenuated as task difficulty increased 

-- which may be in part attributed to increased visual scanning 

of the four numbers to find a solution [4]. Our results were 

also consistent with Wertheim whose work indicated retinal 

involvement of oculomotor control as the cause of reduced 

alpha power [14]. However, it is worth noting that Earle and 

Pikus have also studied the effects of task difficulty on the 

EEG alpha activity as individuals performed arithmetic tasks 

with eyes closed [15]. The study showed that more difficult 

tasks induced lower alpha power, compared to a simple 

counting task. Their results suggested that the reduction of 

alpha power could occur without increasing visual scanning. 

Our future work will include an additional protocol in which 

subjects will be instructed to solve mathematical problems 

with their eyes closed.  

Event-related spectral perturbations, a time-frequency 

analytical method, evaluated averaged dynamic changes in 

amplitudes of the broad band EEG spectrum as a function of 

time following the presentations of mathematical problems.  

ERSP images showed progressively stronger alpha- and 

beta-power suppression and theta-power augmentation during 

the course of problem solving, consistent with previous EEG 

studies in mental arithmetic tasks [16][17]. Studies have also 

shown that alpha suppression occurred when a task became 

more demanding and required greater cognitive effort [1][4]. 

However, ERSPs reported here provide new insights into the 

detailed spatio-temporal dynamics of spectral changes during 

problem solving, which was not available in previous studies.  

For instance, the fact that posterior alpha- and 

beta-suppressions are detectable from virtually the onset of a 

problem to the moment of a solution suggests an important 

role for sustained mental effort in math-based problem 

solving.   
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