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Abstract— Monitoring and interpreting (sub)cortical reor-
ganization after stroke may be useful for selecting therapies
and improving rehabilitation outcome. To develop computa-
tional models that predict behavioral motor improvement from
changing brain activation pattern, we are currently working on
the implementation of a clinically feasible experimental set-up,
which enables recording high quality electroencephalography
(EEG) signals during inpatient rehabilitation of upper and
lower limbs. The major drawback of current experimental
paradigms is the cue-guided repetitive design and the lack of
functional movements. In this paper, we assess the usability
of the Kinect device (Microsoft Inc., Redmond, WA, USA)
for tracking self-paced hand opening and closing movements.
Three able-bodied volunteers performed self-paced right hand
open-close movement sequences while EEG was recorded from
sensorimotor areas and electromyography (EMG) from the
right arm from extensor carpi radialis and flexor carpi radialis
muscles. The results of the study suggest that the Kinect device
allows generation of trigger information that is comparable to
the information that can be obtained from EMG.

I. INTRODUCTION

Directed and early rehabilitation after stroke aims to
promote neuroplasticity, i.e., inducing (sub)cortical reorgani-
zation for minimizing motor impairment [1], [2]. However,
little is known about the interplay between therapeutic in-
terventions, functional improvements and related changes in
brain activity. We are interested in exploring this functional
interaction with the aim of developing computational models
that predict functional improvement from an individual’s
current brain activation pattern as a function of therapy.
This may lead to a dynamic treatment regime for stroke
rehabilitation.

In order to develop such predictive models, we need a
longitudinal study design and the possibility of monitor-
ing the brain activity of individuals during rehabilitation.
Multichannel electroencephalography (EEG) has emerged as
the most important non-invasive signal source for functional
brain mapping (fBM) and brain-computer interfacing (BCI)
in humans [3], [4]. EEG is, compared to magnetoencephalog-
raphy (MEG) or functional magnetic resonance imaging
(fMRI), widely available, inexpensive, compact, and offers a
reasonable trade-off between temporal and spatial resolution.
We are currently working on the implementation of a clini-
cally feasible experimental set-up, which enables recording
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high quality EEG signals during inpatient rehabilitation of
upper and lower limbs.

The major drawback of EEG is the low signal-to-noise
(SNR) ratio. The low SNR and the predominant use of
statistical models and machine learning algorithms for char-
acterizing the causal relationships between behavior and
brain activity patterns in fBM and BCI [5], usually re-
quires that monitored individuals repeat a given behavioral
task (cognitive or motor) a number of times. Experimental
paradigms are consequently designed for recording large
number of trials of stereotypical, usually isolated, movements
(e.g. index finger tapping). However, the resulting time-
constraints and the limited use of functional movements
does not fit the needs of individuals during rehabilitation.
In this case, we need an easy to use and unobtrusive system
that is capable of tracking body limb movements, enabling
patients to perform the task according to their own abilities
and timing. Moreover, since experiments will be repeated
several times, the paradigm should remain motivating. The
use of game-based rehabilitation paradigms, i.e., embedding
activities of daily life in an entertaining game environment,
which allows adapting task difficulty to the individual’s mo-
tor function repertoire, will more likely keep users engaged
and compliant with the requested task [6].

Motion tracking can be realized in several ways [7].
Tracking systems are generally categorized as either non-
visual tracking systems (e.g. based on inertial sensors or
data gloves) or visual systems (e.g. camera). The latter
can further be subdivided into marker-based and marker-
free systems (conventional video camera). Each method
has different merits and limitations. Please refer to [7] for
a survey on different techniques. Considering our interest
in game-based rehabilitation, one inexpensive, flexible and
powerful marker-free visual motion tracking device is the
Kinect (Microsoft Inc., Redmond, WA, USA). The Kinect
motion sensing input device consists of depth sensor, color
image camera (640x480 pixel resoluion at 30 Hz) and 3-
D microphone, and does not require additional sensors that
need to be placed on monitored individuals that may further
limit their range of motion.

In this paper, as a first step towards the development of
enhanced functional brain mapping paradigms, we assess the
usability of the Kinect to track self-paced hand opening and
closing movements (postures) and compare our Kinect-based
movement onset detection algorithm with electromyography
(EMG) signals recorded from finger extensor and flexor
carpi radialis, and present event-related spectral perturbation
(ERSP) maps [8] from EEG electrodes placed over sensori-
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motor areas.

II. METHODS
A. Hand posture detection

Subject recognition and skeleton calculation were based
on the openNITM/NITE framework (http://www.openni.org).
For this study only the position of upper right extremity was
tracked, i.e., shoulder, elbow and hand position. The tracking
algorithm was calibrated by performing a Click-gesture.

Due to varying lightning conditions, surface characters
and limited options in positioning the Kinect sensor during
therapy in the clinical environment, the depth information
provided by the Kinect sensors was noisy and could not
be considered for hand posture detection. Hence, the im-
plemented algorithm was based only on the red-green-blue
(RGB) color information. Please note that the hand tracking
was still based on the Kinect depth sensor.

The implemented hand posture detection algorithm has
two assumptions. Firstly, the hand position is quasi-
stationary, i.e., hand displacements are limited, and secondly,
changes of interest are expected only in a close area around
the estimated hand position. As region of interest (ROI) a
80×80 pixel rectangle centered around the hand position of
the calculated skeleton was selected. The detection algorithm
requires an initial calibration, during which reference images
Ii, i.e., the RGB values in the ROI, of the number of i
different hand postures Pi are acquired and stored (Fig.1). In
this study, we only used hand open and hand closed postures
(i = [1, 2]); The system, however, is scalable. Features
used to characterize each posture Pi were computed by
subdividing the 80×80 pixel bitmap of the ROI into groups
of 2× 2 pixels, and by averaging the RGB information over
the 4 corresponding pixels (µPi

2×2). During posture detection,
in every frame the algorithm compares the µPi

2×2 from the
reference image Ii with µCurrent

2×2 of the current hand image
ICurrent. Hand posture Pi is detected if at least 90% of
the µCurrent

2×2 fall in the range of µPi
2×2 ± 15%. The choice

of detection parameters was made empirically from pilot
experiments, where we observed that the selected parameters
achieved stable detection across subjects. As long as this
criterion was met, posture Pi detected events were triggered.
If the criterion was not met, then no events were triggered.

To reduce false positive posture detections, a dwell time
was implemented. Triggered posture events were only valid
if the same event was triggered consecutively for a given
period of time. We used a dwell time of 100 ms (three image
frames). The corresponding hand posture detection time tPi

was defined as the the time of the first occurrence of a valid
event series. Fig. 1 shows images of detected hand close and
hand open postures. As visual feedback, hand contours are
highlighted.

Hand opening and closing movements inevitably lead to
small displacements of the hand position. To compensate for
such small deviations, after each Pi detection, the reference
image Ii was updated according to Ii = 0.8 · Ii + ICurrent.

The developed detector software framework is
compliant with the TOBI specifications and was

Fig. 1. Picture from the Kinect RGB camera showing a user and,
superimposed, the calculated skeleton of the right upper limb (yellow line).
The image is used for calibrating the hand open posture; The inlay shows
the hand closed posture.

integrated into the TOBI SignalServer framework [9]
(http://tools4bci.sourceforge.net/signalserver.html), which is
distrubited under the GPL version 3.0. Hence, events are
synchronized with biosignal data acquisition.

B. Subjects, Data Acquisition and Experimental Paradigm

Three able bodied volunteers (CE4, BX2 and CC1, all
male, 26±1.5 years old, all right handed) participated in this
study. EEG was recorded from 6 Ag/AgCl electrodes placed
over sensorimotor hand and feet areas. Electrode positions
included FC3, FCZ , FC4, C3, Cz , and C4 (Reference
and ground electrodes were placed on the left and right
mastoid, respectively). EEG electrodes were mounted by
using the Easy Cap (Herrsching, Germany) recording cap.
Electrode impedances were below 5 kΩ. Additionally, EMG
was recorded from the right arm from extensor carpi radialis
and flexor carpi radialis muscles using standard adhesive
disposable Ag/AgCl electrodes. EMG was recorded monopo-
larly, with reference and ground electrodes placed at the
right elbow. EMG bipolar derivations were calculated offline.
All signals were filtered between 0.1 − 100 Hz (Notch at
50Hz) and sampled at a rate of 512 Hz (biosignal amplifier
model gUSBamp from Guger Technolgies, Graz, Austria).
The TOBI Signal Server framework was used to record
biosignals along with the Kinect-triggered events. The Kinect
sensor was placed about 1.5 m away from participants.

Subjects sat in a comfortable chair with the hand open
(fingers extended) positioned on the right arm rest. Partici-
pants were asked to relax and perform self-paced single hand
close-open movements at a comfortable speed with their right
hand in intervals of about 30 seconds. Two experimental runs
of 20 minutes each were recorded for each participant. The
experimenter was visually supervising the experiment and
noting the number of performed hand movements.

C. Signal Analysis

EEG data analysis was performed in Matlab 7.11.0.584
and EEGLAB 8.0.3.5b [10]. Bipolar derivations were com-
puted according to FC3 − C3, FCZ − CZ and FC4 − C4.
The bipolar EEG time series was high pass filtered at
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1 Hz (zero-phase FIR filter order 7500), movement trials
were segmented, and visually inspected for muscle artifacts.
Movement trials were defined as EEG segments from −4
to +6 seconds relative to the movement-onset time tonset,
i.e., the time when participants started closing their hand.
The initial posture was hand open. The time tonset was
defined as the time of the last Kinect-triggered hand open
event. Trials with muscle artifacts at any time within the
trial were excluded from further analysis. This conservative
selection criterion led to the rejection of about 20-30 trials
per participant. From the remaining > 50 trials Event-
Related Spectral Perturbations (ERSPs) [8] were computed.
ERSPs are calculated, computing the power spectra over a
sliding latency window and normalizing these spectograms
by dividing by their respective mean baseline spectra. These
normalized transforms are then averaged over trials. ERSPs
were computed from 6 to 60 Hz. A reference period from −4
to −2 seconds before movement onset was selected to com-
pute the mean baseline spectrum. Significant deviations (p
≤ 0.01) from the average baseline spectrum were computed
with a bootstrapping method [10].

The EMG was high pass filtered at 10 Hz (zero-phase FIR
filter order 300), rectified, segmented from −4 to +6 seconds
relative to movement onset and plotted for visual inspection.
For plotting, a low pass filter of 10 Hz (zerophase FIR filter
order 300) was applied to smooth curves.

III. RESULTS

The mean±standard deviation EMG time course, averaged
over single trial EMG traces, recorded from the extensor
carpi radialis (Extensor) and flexor carpi radialis (Flexor)
muscles for each subject are summarized in Fig. 2. The
upper six plots show the Extensor and Flexor EMG signal
segmented relative to to Kinect-based movement-onset time
tonset = 0 (start of hand closing movement); The lower
six plots show the mean EMG relative to the Kinect-based
movement-offset trigger (t = 0 equals the detection of
the hand open posture). For easier interpretation of Kinect-
based detection and related EMG signals, only the 500
(250) ms prior and 250 (500) ms after movement onset
(offset) detection, respectively, are presented. The curves
show that duration and shape have a high variability between
and also within subjects. The average time lags for movement
onset detection for the Flexor are <250 ms. Time lags for
the Extensor are ≥250 ms. For movement offset detection
the average time lags for both Flexor and Extensor are in the
range between 250 ms and 500 ms (not shown in Fig. 2).

The ERSP time-frequency maps for each bipolar chan-
nel and subject are shown in Fig. 3. The maps shows
characteristic activity patterns at electrode location C3 over
the contralateral hemisphere. Characterisic patterns are a
decrease in sensorimotor rhythms in the 10-13 Hz band
followed by a increase in the beta band (beta-rebound) after
the movement stopped.
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Fig. 2. Mean EMG activity of finger Extensor and Flexor carpi radialis
muscles for each participant. Blue lines shows the mean and the red lines the
mean±standard deviation time course. Kinect trigger for movement onset
and offset detection, respectively, were issued at time t = 0 s.

IV. DISCUSSION

The aim of this work was to assess the usefulness of
the Kinect sensor to track basic self-paced hand postures in
a clinical environment. We selected a vision-based marker
free system, which does not interfere with the movement
abilities of monitored individuals. Placing additional sensors
and calibrating the tracking system can be time-consuming
and hence may be an additional burden for individuals during
functional rehabilitation.

At this time, the used openNITM/NITE framework requires
an initial calibration of the skeletal tracking algorithm. Pro-
vided algorithms are robust and hence, in the case of patients
with limited arm movements, assistants, e.g. nursing staff,
could surrogate the patient. However, alternative software
development kits already support, and future releases of
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Fig. 3. ERSP time-frequency maps. Blue pixels indicate a significant power
decrease compared to the reference period [−4−2] s. Red pixels correspond
to a significant power increase.

the used framework will support, calibration-less skeleton
tracking.

The developed hand posture detection algorithm is not
very sophisticated, however, it was able to successfully detect
all hand opening and closing movement sequences (visual
supervision). These good results are due on the one hand to
the very basic experimental paradigm and on the other to
the use of a dwell time (100 ms) for reducing false positive
detections. More sophisticated methods may be required for
detecting distinct hand postures while performing functional
movements.

The mean time lag between the average EMG onset of
the Flexor carpi radialis muscle and the Kinect-trigger was
less than 250 ms for each subject. This time lag allowed us
to get a satisfactory segmentation of EMG and meaningful
ERSP maps. All other average time lags were ≥250 ms and
have not been further researched in this study. Hence, for
the selected movement task the Kinect-trigger information
was more in line with the mean EMG onset of the Flexor
carpi radials muscle for the hand closing movement (Fig.2).
The curve shapes in Fig.2 show that each subject performed
the motor task differently. Subject BX2 executed movements
slower than CE4 and CC1. Subjects CE4 and BX2 performed
the movement continuously, whereas CC1 showed a break
(decreased EMG activity) between hand closing and opening
(Flexor in Fig.2 ). For all subjects, however, the Extensor was
activated first. Since the right arm was placed on an armrest,
subjects performed a small wrist extension prior the hand
open-close movement task.

The ERSP time-frequnecy maps in Fig.3 show different

activity patterns for movement preparation and execution for
each subject. Each subject, however, exhibited characteristic
alpha band synchronization, as well as a short lasting beta
band synchronization, also known as beta rebound, over
the contralateral hemisphere. The ERSP maps also confirm
that spectral components in the range 8 − 35 Hz are most
responsive. These results are in agreement with the literature
(e.g. [11]). Higher frequency components did not show
significant activity during movement.

Please note that the use of the Kinect device for tracking
body limb movements does not make the use of EMG and
other measures of muscle activity such as inertial sensors
obsolete. Video based tracking will only be useful when
patients have regained visible control over lost limb function.
The minimum movement range depends, among others, on
the distance of the Kinect sensor to the user, the image
resolution and the frame rate. Studying these relationships
and finding optimal parameters is left for future research.

V. CONCLUSION

We introduced the use of the Kinect device as a small, flex-
ible, scalable, unobtrusive and inexpensive motion tracking
system for functional brain mapping. These qualities and the
encouraging first results represent a sound basis for further
developments and improvements.
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