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Abstract— A brain-computer interface (BCI) based on near-
infrared spectroscopy (NIRS) could act as a tool for rehabili-
tation of stroke patients due to the neural activity induced by
motor imagery aided by real-time feedback of hemodynamic
activation. When combined with functional electrical stimula-
tion (FES) of the affected limb, BCI is expected to have an
even greater benefit due to the contingency established between
motor imagery and afferent, haptic feedback from stimulation.
Yet, few studies have explored such an approach, presumably
due to the difficulty in dissociating and thus decoding the
hemodynamic response (HDR) between motor imagery and
peripheral stimulation. Here, for the first time, we demonstrate
that NIRS signals elicited by motor imagery can be reliably
discriminated from those due to FES, by first performing a
univariate analysis of the NIRS signals, and subsequently by
multivariate pattern classification. Our results showing that
robust classification of motor imagery from the rest condition is
possible support previous findings that imagery could be used to
drive a BCI based on NIRS. More importantly, we demonstrate
for the first time the successful classification of motor imagery
and FES, indicating that it is technically feasible to implement
a contingent NIRS-BCI with FES.

I. INTRODUCTION

Near-infrared spectroscopy (NIRS) has gained traction in
recent years as it provides certain advantages.The potentially
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higher spatial resolution compared to electroencephalogra-
phy (EEG) and the lower price and portability compared to
magnetic resonance imaging (MRI) and magnetoencephalog-
raphy (MEG) predestine NIRS for certain applications. One
desirable application is a brain-computer interface (BCI).
For more than a decade EEG-BCIs have been utilized in
rehabilitation scenarios [1]. Although the hemodynamic re-
sponse (HDR) is observed after neural firing with a large time
delay of several seconds, it has been shown that regulation
of hemodynamics can be achieved with real-time feedback
[2]. Although limited to the recording of signals from the
outer layers of the cortex, NIRS can nevertheless be useful
for detecting oxygenation changes in a number of areas
associated with motor tasks. Real-time feedback of activation
from these areas could be utilized for applications in motor
learning. Activations associated with motor execution and
imagery can be reliably classified with machine learning
techniques [3]. For a variety of tasks, NIRS signals from
different parts of the brain have been shown to be identifiable
on the single trial level [4], [5], [6]. First applications
of NIRS-BCIs have already been successfully implemented
[7]. To make use of a BCI for the rehabilitation stroke
patients one major approach is to close the feedback loop
by providing haptic feedback. This has been proposed as
necessary to facilitate neuronal reorganization [9]. Haptic
feedback is expected to evoke hemodynamic activations in
areas of the sensorimotor and motor cortex [10] that could
be utilized to control the BCI. However, one must ascertain
that the BCI can reliably distinguish between activation
patterns related to motor imagery and activations due to the
afferent haptic feedback, without which the BCI would not be
properly operationalized [11]. In addition, self-regulation of
brain activation necessarily requires that feedback provided is
contingent [12], [13]. To establish contingency in a BCI the
classifier needs to be able to distinguish between voluntary
activations and stimulus-induced activations. Furthermore a
classification accuracy of 70 % is assumed to be the lower
bound for a user-friendly BCI application [14]. Functional
electrical stimulation (FES) is one established method for
providing haptic feedback [11]. In this work we analyze the
effect of motor imagery on NIRS signals and the possibility
to distinguish the evoked activation from rest. Furthermore
we investigate the effect of FES and the feasibility of
distinguishing between activations due to motor imagery and
FES.
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II. METHODS

A. Experimental design

Eight right handed (81.8±16.4 according to the Edinburgh
handedness inventory [15]) healthy volunteers were involved
in the study. Their age was 24.8±2.4 years. Six subjects were
female.Subjects were seated in a comfortable chair with 2
arm rests on which they placed their forearms, Visual stimuli
were presented during the experiment with the software
Presentation (Neurobehavioral Systems, Inc., Albany, CA,
USA). During the experiment, subjects were asked to per-
form 2 different tasks: (1) imagine opening and closing their
right hand without any actual movement and (2) having their
right hand passively moved by FES (2). The block duration
of both conditions was 10 s (see Fig. 1). Both conditions
were preceded by visual cues of 1 s duration indicating the
subjects to prepare for the following task. The stimulation
block consisted of 10 subblocks, in which extensor and flexor
were alternately stimulated for 1 s at a time. In between the
condition blocks a black screen containing the word ”Rest”
indicated subjects to relax and rest. The rest times varied
pseudorandomly between 10 s and 15 s to avoid anticipation
by the subjects. Furthermore varying rest times instead of
fixed rest times (and thereby an experimental time constant
in the same order of magnitude as the expected effects)
avoided synchronisation with physiological effects. Each task

Fig. 1. Time course of a single stimulation block and a single imagery
block. Both condition blocks are preceded by a preparation cue of 1 s length.
The stimulation block consists of alternating functional electrical stimulation
of extensor and flexor. Both condition blocks are succeded by rest condition
of pseudorandom length of 10-15 s.

was repeated 30 times in pseudorandom order during the
experiment to avoid anticipation effects. The experiment was
approved by the ethics commission of the Medical faculty
of the Eberhard Karls University, Tübingen.

B. FES

Before the experiment FES parameters were adjusted
for each individual. We used the Motionstim 8 stimulator
from MEDEL GmbH, Hamburg, Germany. Two unipolar
electrodes of oval shape (4x6 cm) were placed on the ex-
tensor digitorum communis (EDC) and two electrodes were
placed on the flexor digitorum communis (FDC) of the right
forearm following physical landmarks. The pulse width was
fixed to 300µs. The stimulation frequency varied between
either 20 Hz or 30 Hz. The amplitude was adjusted for each
individual to cross the motor threshold of both muscles to

produce finger extension and flexion. Average amplitude of
stimulation for the EDC was 19.9±3.8 mA and for the FDC
was 17.5±3.6 mA. The subjects were instructed neither to
move their fingers against or together with the FES driven
movements nor to imagine hand movements.

C. Signal Acquisition

To optically image the bilateral motor cortex we used
the FOIRE-3000 from Shimadzu Europa GmbH, 47269
Duisburg, Germany operating at 780 nm and 830 nm at a
sampling rate of 8 Hz. The optodes were attached to the
head with a semi-flexible head mount. Sixteen sources and
16 detectors were arranged in two 4x4 checkerboard topogra-
phies centered around C3 and C4 of the international 10-20
system [16], thereby covering most of the primary motor
cortex, premotor cortex and somatosensory cortex associated
with hand movements, motor imagery and the processing of
sensations of the hand [17]. The source-detector distance was
about 2.5 cm. The computer on which visual stimuli were
shown using Presentation sent trigger signals via a parallel
port to the NIRS system, which inserted the corresponding
time information into the raw NIRS data. A second computer
read out FES triggers from the first computer via TCP-IP
protocol. The second computer sent corresponding FES state
change commands via an ethernet cable to the FES device.
To separate the stimulator for electrical safety reasons from
the electronic circuits of the computers a galvanic separation
box (MEDEL GmbH, Hamburg, Germany) was used.

D. Signal Processing

Data analysis was performed using NIRS-SPM [18] and
SPM 8 [19], both toolboxes for Matlab (The MathWorks,
Inc.). Only changes in oxygenated hemoglobin were con-
sidered for statistical analysis since those were expected to
include the largest concentration changes. The data was de-
trended (of global trends and of noise components) applying
Wavelet-MDL (minimum description length) [20]. To correct
for autocorrelations data was smoothed with a filter shaped
as a HDR function (precoloring method) [18], [?]. The
preprocessed data was then statistically analysed based on
the general linear model. Interpolated t-statistic maps were
computed and thresholded (p<0.05) for each contrast. The
ratio between the significantly activated area and the total
area covered by the probe (4 x 4 optodes, 7.5 cm x 7.5 cm)
was computed. The following contrasts were investigated:

• FES vs. Rest
• Motor imagery of hand opening and closing vs. Rest
• FES vs. Motor imagery of hand opening and closing

E. Classification

Data was classified using an offline, linear Support Vector
Machine (SVM) based classifier. Raw data was converted
using the Beer-Lambert law into concentration changes of
oxygenated and deoxygenated hemoglobin [21]. The con-
verted data was lowpass filtered with a zero-phase Chebyshev
type II filter. Passband frequency was 0.14 Hz, Stopband
frequency 0.141 Hz, Passband ripple 0.5 dB and Stopband
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attenuation 40 dB. The passband frequency of 0.14 Hz was
chosen to remove cardiac, respiratory and Mayer wave
frequencies.
To classify FES vs. Rest and motor imagery (MI) vs. Rest
both oxygenated and deoxygenated time courses were aver-
aged for each of the 48 channels for 2 non-overlapping time
windows of 2.5 s length. For the activation block data the
first time window comprised seconds 6-8.5 of the activation
block and the second time window comprised seconds 8.5
of the activation block to second 1 of the following rest
block. The second time window overlaps the rest block to
account for the delay in the HDR. For the rest block data
the first time window comprised seconds (-5)-(-2.5) before
the onset of preparation of the preceding rest block and the
second time window comprised seconds (-2.5)-0. Two time
windows contain more temporal information and were as
well employed for rest data to allow for simple classification.
This method results in 192 (2∗48∗2) features for each of
the 30 condition blocks and for each of the 30 preceding
rest blocks. The same preprocessing was applied to classify
FES vs. MI, while the averaged time windows for both
conditions comprised seconds 6-8.5 of the activation block
and seconds 8.5 of the activation block to second 1 of the
following rest block respectively. To take into account all of
the available temporal data a second method of preprocessing
was applied before classifying FES vs. MI. In the second
method 2 time windows of 5 s of activation were averaged
comprising seconds 4-9 of the activation block and second
9 of the activation block to second 4 of the succeeding rest
block. This method results in 192 (2∗48∗2) features for each
of the 30 condition blocks and for each of the 30 preceding
rest blocks. Data was split as a randomly chosen training data

Fig. 2. Time windows used for classification for method 1 and 2
respectively.

set (54 blocks) and a remaining test data set (6 blocks) for
each subject. The training data set was normalized (centered
around 0 and scaled to [-1,1]) first and the test data set
was then normalized based on the parameters of the training
data set. Normalization was applied to improve classification
results. Then the classifier was trained on the training data
set and tested on the test data set. This process was repeated
10 times (10-fold cross-validation).

III. RESULTS
The size of the significantly activated areas as a ratio of

the whole monitored cortical surface is reported in table I.

TABLE I
ACTIVATED SURFACE AREA

Subjects MI vs. Rest FES vs. Rest MI vs. FES
1 10.3 % 0.0 % 13.7 %
2 0.3 % 0.0 % 1.4 %
3 1.5 % 1.5 % 2.2 %
4 3.5 % 0.0 % 10.3 %
5 10.2 % 0.0 % 9.0 %
6 14.5 % 9.0 % 3.6 %
7 0.0 % 2.6 % 0.0 %
8 7.3 % 1.4 % 0.1 %

Mean 5.9 % 1.8 % 5.0 %
± Std 5.4 % 3.0 % 5.3 %

For the contrast MI vs. Rest on average 5.9 %±5.4 % of
the monitored cortical surface is activated. For the contrast
FES vs. Rest on average 1.8 %±3.0 % is activated (including
4 subjects, for whom no area was found to be significantly
activated). We expected more cortical areas to be involved in
the process of motor imagery, which involves motor planning
and movement inhibition, compared to just receiving passive
stimulation [17]. On the individual level, too, we found for all
subjects but two a larger area activated during motor imagery
than during FES. For the contrast MI vs. FES on average
5.0 %±5.3 % is activated. This mean value is slightly smaller
than the 5.9 %±5.4 % for the contrast MI vs. Rest, but in the
same order of magnitude.

TABLE II
CLASSIFICATION ACCURACIES

Subjects MI vs. Rest FES vs. Rest MI vs. FES MI vs. FES
5 s 5 s 5 s 10 s

1 66.7 70.0 65.0 70.0
2 65.0 55.0 63.3 75.0
3 71.7 68.3 71.7 73.3
4 81.7 58.3 65.0 76.7
5 61.7 63.3 83.3 80.0
6 66.7 45.0 66.7 76.7
7 65.0 83.3 70.0 70.0
8 73.3 63.3 83.3 91.7

Mean 69.0 63.3 71.0 76.7
± Std ±6.4 ±11.3 ±8.1 ±7.0

The average classfication accuracy for each subject and
each method is reported in table II. The chance level for
2-class classification is 50 %. For 60 classified trials the
confidence limits of a chance result are [22]:

• 95 % confidence limit: 62.3 %, and
• 99 % confidence limit: 66.1 %.

For the contrast MI vs. Rest data could be classified for
all subjects except one within the 95 % confidence limit.
Thereby motor imagery can be distinguished from rest. The
mean classification accuracy is 69.0 %. Since this is very
close to the assumed lower limit of a user-friendly BCI
(70 %), we are encouraged by the results to work towards
a NIRS-BCI. For the contrast FES vs. Rest data could be
classified for all subjects except 3 within the 95 % confidence
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limit. We could for the first time classify FES induced
hemodynamic activations from rest. For both processing
methods of the contrast MI vs. FES data could be classified
for all subjects within the 95 % confidence limit. For the
method that utilized 5 s of activation data could be classified
for all except 3 subjects within the 91 % confidence limit.
For the method that utilized 10 s of activation data could
be classified for all subjects within the 91 % confidence
limit. Based on the above results, we conclude that motor
imagery can be distinguished from FES in NIRS signals. The
longer the included time course, the higher the classification
accuracy. The mean classification accuracy for both methods
is higher than 70 % (71.0 % and 76.7 % respectively). A
NIRS-BCI based on the classifier described above could be
activated by motor imagery within nearly user friendly limits
(>70 %). Once this NIRS-BCI would activate FES feedback,
the contigency of feedback could still be ensured within user
friendly limits.

IV. CONCLUSIONS
First of all we could verify previous findings about NIRS

being able to detect motor imagery. In line with previ-
ous work [3] the hemodynamic response evoked by motor
imagery can be classified offline above chance level. This
finding is important in view of future online applications of
motor imagery evoked signals to control an external device.
To use such a BCI in rehabilitation applications on patients
suffering from motor impairments such as stroke patients, the
feedback loop would need to be closed by providing haptic
feedback to facilitate neuronal reorganisation [9]. This haptic
feedback is expected to evoke hemodynamic activations in
parts of the sensorimotor cortex, while at the same time
activations of the sensorimotor cortex are utilized to operate
the BCI. Therefore we studied the activations evoked by
motor imagery and by FES and found that they can be
distinguished statistically as well as by an offline classifier.
This finding allows for the setup of a haptic NIRS-based
BCI, which instead of being driven by activations due to
afferent sensations caused by the haptic feedback, would
be instead appropiately driven by motor imagery alone.
Nevertheless the small activation ratios emphasize the need
for a good classifier. Furthermore we verified that activations
evoked by FES can be detected with NIRS [10]. In this
study we classified FES evoked NIRS signals compared to
rest. When comparing hemodynamic activations evoked by
motor imagery vs. those evoked by FES, the classification
accuracy is higher than 70 %, the assumed lower bound for
a feasible BCI application [14]. Our work establishes for
the first time that HDR to motor imagery and FES can be
reliably distinguished by pattern classification thus paving
the way for BCI applications of rehabilitation.
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