
  

  

 
Abstract— Mechanical Embolus Removal in Cerebral 

Ischemia (MERCI) has been supported by medical trials as an 

improved method of treating ischemic stroke past the safe 

window of time for administering clot-busting drugs, and was 

released for medical use in 2004.  The importance of analyzing 

real-world data collected from MERCI clinical trials is key to 

providing insights on the effectiveness of MERCI. Most of the 

existing data analysis on MERCI results has thus far employed 

conventional statistical analysis techniques.  To the best of our 

knowledge, advanced data analytics and data mining techniques 

have not yet been systematically applied.  To address the issue 

in this thesis, we conduct a comprehensive study on employing 

state of the art machine learning algorithms to generate 

prediction criteria for the outcome of MERCI patients. 

Specifically, we investigate the issue of how to choose the most 

significant attributes of a data set with limited instance 

examples. We propose a few search algorithms to identify the 

significant attributes, followed by a thorough performance 

analysis for each algorithm. Finally, we apply our proposed 

approach to the real-world, de-identified patient data provided 

by Erlanger Southeast Regional Stroke Center, Chattanooga, 

TN. Our experimental results have demonstrated that our 

proposed approach performs well. 

I. INTRODUCTION 

MERCI [1] is a relatively new medical procedure 
released by the Food and Drug Administration in 2004, 
which widens the therapeutic window for removing deadly 
blood clots from the brain to 8 hours after the onset of acute 
ischemic stroke (AIS). The only additional treatment for 
acute stroke, Tissue Plasminogen Activator (tPA), is a drug 
approved in 1996administered intravenously (IV) for 
dissolving clots within the brain, benefits approximately 1 in 
8 patients and has FDA approval for only 3 hours after 
stroke onset. Although associated with improved morbidity 
(i.e., patients functionality and quality of life), IV-tPA did 
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not improve mortality in pivotal trials [2]. In addition, only a 
small fraction of patients who qualify for IV-tPA actually 
receive this treatment [2]. This expansion of the time 
window offered by MERCI can be critical to the patient’s 
outcome and may be particularly beneficial in patients with 
large clot burden [3]. While the usage of MERCI, and two 
other clot extractors currently approved for thrombectomy in  
patients with AIS [4, 5], is rapidly growing, the lack  of 
placebo controlled trials in the stroke device field and the 
variability of study results has contributed to hesitation on 
the part of treating physicians to fully embrace this new 
technology. Furthermore, the complexity of variables 
relating to the medical treatment of these patients makes 
study result interpretation and comparison challenging.  As 
part of a large national registry [5], Erlanger Hospital of 
Chattanooga, Tennessee and the University of Tennessee: 
College of Medicine Chattanooga (UTCOMC) has collected 
data strictly confined to stroke patients treated by MERCI, 
including a generous collection of detail with regards to 
procedure analysis, including patient diagnosis and status 
levels coming in the door, surgical procedure data, patient 
status after the procedure, and 90-day follow-ups [6]. In this 
paper, by introducing data mining techniques to this study, 
we ultimately hope to not only reinforce the findings of 
conventional statistical approaches, but to search for new 
relationships and significance within the data that might not 
have been found before.  

To this end, we are looking to successfully mine the data 
collected by Erlanger hospital to produce effective prediction 
weights, which should reasonably predict a new patient’s 
outcome. Using transparent methods for this prediction 
demonstrates easily recognizable relationships with the data. 

Much larger collections of data exist in state or national 
stroke registries, but such sources are often difficult to access 
for purposes in individual center academic research. Our 
smaller collection of data provided by Erlanger represents a 
specific study of a more homogenous patient population 
from the south.  Furthermore, working with a smaller data set 
with many attributes per instance is an issue that we have not 
seen addressed as frequently in our search for other data 
mining studies, and a new study on this subject might open 
another niche of discourse in Information Science on solving 
some real problems [7, 8]. 
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II. DATA 

A. Overview of Data 

The specific study used for this data mining survey 
consists of a total of 115 patients meeting the following 
criteria: Each patient was diagnosed with acute ischemic 
stroke; Arrival for treatment was between 3 and 8 hours after 
stroke onset; Each patient was over 18 years of age; Each 
patient exhibited an ischemic stroke clinically with CT 
neuroimaging disclosing hypodensity less than 1/3 the 
middle cerebral artery territory. Because this data set is 
exclusively made up of MERCI patients, our study is 
specifically limited to gauging factors for patient health and 
mortality given MERCI treatment. Therefore, without a strict 
control group our goal becomes not that of measuring the 
effectiveness of MERCI itself in relation to other treatments 
or little to no treatment at all, but rather a search for relations 
among more specific factors within the MERCI process 
itself. This level of study is an appropriate stage of 
specificity progression, given that medical trials have already 
established MERCI to be “cost effective” compared to other 
procedures within its approved treatment window. An 
evaluation of more specific details within a more developed 
branch of the decision making process further sharpens our 
understanding of information closer to the end result. Our 
goal is specifically to create a successful automated 
prediction system, which predicts the outcome of subsequent 
input data of a similar sort, and is easily discernible by 
analysis both inside and out of the Information Science 
discipline to determine the most significant prediction 
sources. 

B. Choose Attribute 

The detail size of this sample set provides for a variety of 
choices from which to draw statistical trends.  These details 
can be categorized a number of ways, but for machine 
learning and data mining algorithms, the following 
categories split the data according to their logical functions 
in discovery: (1) Static data – Information that does not 
involve any choice in the medical process. For example, 
Personal information: age, gender, etc, Diagnosis 
information, Location of clot; (2) Non-static data – 
information that could be effected by decisions in treatment. 
For example, Procedural information, Device usage, Onset to 
puncture, Procedure length; (3) “Negligible” or repetitive 
institutional data – Some details are simply listings of 
facilities, patient numbers, surgeons, etc.  It could be argued 
that not all of these are irrelevant, but we have discarded 
them for this study, either by negligibility, or due to 
repetition in values; (4) Outcomes and post-procedure data. 
Ultimately, 40 useful instance attributes were identified for 
input. Of the attributes identified as possible outcome 
gauges, 2 were chosen for class attributes:  90-day mortality, 
a check for patient survivability 90 days after the 
endovascular procedure with MERCI, and 90-day MRS 
(Modified Rankin Scale), a more precise measurement of the 
patients neurologic recovery. 

C. Sample set size   

Because 3 patients had no result attributes recorded, they 
were eliminated from the data set, leaving 112 instances for 
training and testing. Many modern data mining  efforts use 
massive amounts of data to sharpen weights and render detail 
size maxima negligible for their algorithms, so this number 
could be said to be small by relation, although it represents a 
great deal of gathering work and is over three times the size 
of the typical medical trials examined in preliminary 
research. While hundreds of general stroke examples might 
be obtained nation-wide via a stroke registry, this more 
specialized set emphasizes the more exact details of a much 
smaller sub-group in a local area. Thus, new samples are 
more difficult to come by, but the set provides more 
specialized trends that would likely not be conclusively 
found in more general databases without sifting with 
correlative search criteria.  In any event, this set is still large 
enough to establish trends, but the marginal return of all 40 
attributes may be limited due to insufficient instances to train 
them. 

D. Balance 

In terms of 90-day mortality, the data was well balanced, 
with 53 deaths and 59 survivors. The 90-day MRS 
benchmark, however, is unbalanced by nature.  Figure 1 
shows the distributions of ratings 0 – 6. As a set of numbers, 
this gauge is heavily unbalanced to a rating of 6, and drives 
most classifiers to overestimation.  When an understanding 
of its semantics is applied, however, the skewed weight 
towards 6 is simply a result of 6 representing death.  Life, 
then, is divided among ratings 0-5. If possible, it would be 
beneficial for information science to be able to divide death 
into similar sub-categories, to represent varying levels of 
how close each patient’s demise was to recoverability.  
Perhaps one patient was completely un-savable, regardless of 
any intervention at all, but another might have been saved 
with different choices made.  This falls into the realm of 
speculation, however, and death is, in reality, a condition 
without levels – dead is dead, and one cannot become better 
or worse after dying. Nonetheless, applying the fact that 
MRS = 6 refers to death, this apparently unbalanced data set 
rather becomes a two-layered classification problem with 
sub-problems of a much more balanced nature. Without 
rating 6, while we have no instances of 5 or 0, the 
distribution still has a somewhat reasonable bell-curve shape. 
If the data set is first analyzed in terms of life and death, 
those instances that received a life prediction could be 
further analyzed with weights trained to predict MRS ratings 
0-5.  The second layer, then, would be trained with the 59 
survivors 

III. PROPOSED APPROACH 

A.  Choosing Classifiers 

Ultimately, a variety of classifiers should be used for an 
exhaustive study of this data, since automated test processes 
can run day and night for further analysis. For this stage in 
examining the data, however, we were most interested in a 
more limited set of criteria. “White box” classification: 
Ideally, we would like the end results to be easily 
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understandable by analysts outside of the Information 
Science discipline. Multi-layered approaches, such as neural 
networks, use a system of derived weights which may train 
well, but do not present a clear and easily traceable line of 
significance back to the original attributes. Single-layered 
weights can convey the significance of each attribute more 
plainly, and are thus encouraged.  This exclusion of machine 
learning complexity, of course, may eliminate algorithms 
that might perform better, but similar complexities can be 
added with more easily traceable layering, as will be 
explained later in Attribute Layering. Initial Naïve Analysis: 
Initially, we would like our algorithm to make no automatic 
assertions that any attributes are related to one another, 
allowing weights to be derived as independently as possible.  
In the end, however, this will likely not be the optimal 
solution. We know already that major groupings of attributes 
exist:  patient vitals, procedure data, and post-procedure 
data.  It is our initial assumption that none of the inputs for 
these experiments are reliant upon the other.  This, of course, 
may not ultimately be appropriate for some sub-sets of 
inputs, such as groupings of instruments used, but any 
relationships to these can be inserted afterwards with 
Attribute Layering. Flexibility: Technology that handles 
missing data is a must, as each instance sample is highly 
valued.  It is also preferable, while single-layered algorithms 
are preferred for their transparency, that these algorithms can 
be easily stacked to address our balancing issue with the 90-
day MRS result. A number of data mining methods were 
considered in preliminary experiments at the beginning of 
the study, with emphasis on linear regression and Bayesian 
techniques which satisfied the above characteristics. At the 
beginning of our study, we began manual experimentation 
with several data mining approaches, using the University of 
Waikato’s Weka GUI, to find a suitable candidate for 
programmatic refinement. Logistic Regression proved to be 
the best performing approach meeting the above criteria in 
the experimental stage. For this reason, coding for the 
remainder of our proposed approach was tested and 
debugged using it as a prime algorithm.  More success in the 
manual experiment stage does not, however, indicate that 
Logistic Regression will be the best choice once all other 
parts of our solution are implemented, so a return to other 
algorithms is far from out of question in future work. 

B. Searching for Significant Attributes 

Although Logistic Regression proved to be the best of the 
white-box methods evaluated by initial experimentation, it 
suffers from a tendency to overestimate weights in data sets 
where the number of detail variables is relatively large with 
respect to instance samples provided [9].  This tendency is in 
the nature of variable estimation, particularly demonstrated 
in Gaussian Elimination solutions to algebraic systems by 
“free variables.”   

Unlike the equations of a linear system in a mathematics 
textbook, a data set is an abridged representative of its 
universe – if we do not have enough samples to pin down the 
significance of each attribute provided, the significance of 
every attribute can be skewed on the whole [9]. Therefore, 
we need to develop a new approach to choose a combination 
of attributes which best affects prediction performance. Four 

methods of doing so were examined, with varying reliance 
on estimated weights.  

Depth First Search (DFS): A DFS approach was 
employed to exhaustively search every possible attribute 
combination for the most effective.  With 40 input attributes 
to choose from, the complexity of this algorithm becomes a 
choosing equation.  While this may ultimately find the best 
combination given enough time, the complexity of the search 
is explosive as more attributes are added [10]. Because an 
immense runtime would be required for a complete DFS for 
all attribute combinations, a pre-specified attribute limit 
parameter was put in place to keep the algorithm’s runtime 
within several hours. Some technological approaches, such 
as multiprocessing or more robust and/or dedicated machines 
could be used to make DFS faster, but this incredible 
complexity in any case requires substantial computations to 
finish;  

Naïve Smart Search: To improve on DFS, our simplest 
approach uses a saved-progress function related to dynamic 
programming. As with DFS, the number of attributes to be 
chosen is provided beforehand, in order to divide the 
problem into batch chunks and simplify the logic. Given a 
pre-chosen attribute selection r, the algorithm begins with a 
simple selection of the first r attributes in the set, calculating 
their score. For example, representing attributes with 
numeric names for simplicity, with a given r=5 and an initial 
prediction success rate of 43%. Being the first evaluation 
made, this score is saved as the “best” evaluation.  The 
search continues by examining the 6

th
 attribute.  An 

evaluation is made of r sets of attributes, with the new 
attribute replacing one of the attributes in the current “best” 
evaluation. After the accuracy of each new evaluation is 
calculated, all r+1 (in the case of our example, 6) 
evaluations are compared, and the best of those becomes the 
new “best.”  This process is repeated until all attributes have 
been processed. Given 1 combination for the first r 
attributes, followed by r combinations for each of the 
remaining n-r attributes, we have r(n-r)+1 complexity for 
each r, resulting in the following complexity for calculating 
all r. By eliminating attributes that perform less accurately, 
Smart Search runs with a complexity of 2.81*10

-7
 percent of 

that required by DFS.  Apart from using no direct heuristic to 
further eliminate search branches, the disadvantage of using 
this algorithm to build a combination set, starting from 
attribute 1 and traversing to attribute n, is that, by design, 
many correlations between attributes from one side of the set 
to the other are eliminated from evaluation;  

Weight-based Search: The particularly crippling reality 
for any attribute choosing algorithm is that each unit of 
complexity represents a training session, which is expensive 
in its own right.  With 112 examples, our data set’s training 
session will require a relatively short period of machine time, 
but as the dataset grows, further elimination of complexity 
may play a key role in investigating larger data sets, which 
may not have reached the point yet where attribute number is 
negligible and attribute finding algorithms are depreciated. 
Naturally, the magnitude of weight assigned to each attribute 
is a measure of that attribute’s estimated significance to the 
outcome of the current combination.  Thus, it is a natural and 
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automatic heuristic for eliminating least effective attributes – 
this eliminates the need to evaluate each attribute in a 
combination as a drop candidate, reducing complexity by a 
factor of r, if following the pattern of Naïve Smart Search. 
While this application significantly reduces the complexity 
of Naïve Smart Search in its steps, it still retains O(n^2) 
complexity in its upper bound.  Carrying reliance on the 
heuristic further, it would be possible to begin with all 42 
attributes, eliminating them one at a time according to the 
lowest weight, until the outcome of the machine’s prediction 
ceased to improve, coming to an estimated set of “most 
significant attributes” in O(n) time.  

Weight-Based Smart Search: To take full advantage of 
a weight-based heuristic with a 1 to n algorithm, the 
summation property of Naïve Smart Search can be 
eliminated by adding and removing attributes on the fly. The 
state machine in Figure 2 illustrates three different phases for 
adding and removing attributes in a Weight-Based Smart 
Search.  The algorithm begins by adding attributes and 
evaluating Logistic Regression after each add.  As long as 
the performance of our combination improves, we continue 
adding. 

IV. RESULTS AND CONCLUSIONS 

Due to constraints of time, a complete measurement of 
attribute finding with Depth First Search was impossible.  
Searching with a constraint of 3 attributes for single-layered 
Logistic Regression required 8 hours on an i7 system with 1 
GB dedicated to the heap, yielding a success rate of 63% for 
90-day mortality training. A constraint of 4 attributes 
required over 24 hours and did not complete. Naïve Smart 
Search was able to reduce runtime for a single attribute 
constraint to minutes, and completed the entire batch of 
constraints in 40 minutes, with a success rate averaging at 
roughly 74% in single-layer Logistic Regression.  This 
performance was consistent, with waivering of some +-1.5% 
success rate due to the random number generators used in the 
training algorithms.  False Negatives vs. False positives were 
balanced, with the following attributes selected as 
significant: Age, Intubulation, IV Lytic, Length of 
Procedure, Diastolic B/P, Right Anterior (location of clot), 
ICA, MCA, IA Lytic, Count of V2.5 Firm. Top-down 
weight-based attribute choosing, while finishing very quickly 
in a few seconds, only managed to yield a 63% success rate.  
As this algorithm is not novel to this project, it might be said 
to be a control on the other end of the spectrum to DFS. 
Weight-based Smart Search, executing in less than 30 
seconds, yields a success rate averaging around 70%.  Figure 

4 shows a graphic representation of all four algorithms.  The 
success rate of DFS is a guess, since a full iteration of it 
could not be completed. Initial MRS performance, using 
conventional prediction without splitting the problem, was at 
42%, with similar attributes selection dwelling more on the 
location of the clot. As was the case in initial trial 
experiments, conventional MRS prediction leans heavily 
towards rating 6. The patient’s diagnosis and vital signs 
played the largest role in our prediction criteria, but 
procedural data also played a part. It is likely that a 
hypothetical dataset containing a control group of 
unfortunate patients, for whom no treatment was available, 
would see more reliance on procedural data.  Making a 
distinction between the impact of differences in medical 
choices and the differences in patient condition which 
influenced those choices is still up to Medical Science at this 
point. While the goal included advancements towards 
medical predictions, the fruits of this research are more 
generally applicable to Information Science as a whole.  
There is little about these solutions that are particular to 
medical data mining – machine learning for any dataset with 
the same concerns for data Instances vs. data attributes can 
benefit from attribute choosing algorithms.  
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Figure 2: State machine that illustrates three different 

phases for adding and removing attributes 
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