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Abstract — We present an enhanced algorithm for seizure 

onset and offset detection in rats’ ECoG.  Because a seizure in 

rats’ ECoG evolves much more stereotypically than that in 

human, analyzing seizure evolution in rats’ ECoG is advanta-

geous to understanding the evolution process.  The proposed 

algorithm outperforms a prior automatic seizure detection and 

termination system in in-vivo rats’ ECoG.  We improve the 

algorithm by using relevant frequency bands of 14-22 Hz to 

onsets and 7-45Hz to offsets; by using spectral power rather 

than spectral amplitudes for its feature; and by replacing the 

2-point moving-average filter for postprocessing with a 2nd 

order Kalman filter.  Not only does the proposed algorithm 

provide better detection statistics, but it lowers the system’s 

complexity by no longer requiring computation of a fast Fourier 

transform and by using a single structure with the two different 

spectral power features for onset and offset detection. 

I. INTRODUCTION 

Epilepsy is one of the common neurological disorders, 
where a person experiences repeated seizures.  Approximately 
one in every ten people experiences a seizure in his or her life, 
and approximately one in one hundred experiences multiple 
seizures. The latter are classified as epileptics.  It is estimated 
that direct and indirect cost due to epilepsy amount to over 15 
billion dollars per year in the USA [1]. 

One of the most critical issues for epilepsy is that seizures 
are practically unpredictable [2].  Because they may strike the 
patients abruptly, their daily lives are significantly impaired in 
many aspects, such as being restricted to drive a car.  A 
reliable method to detect a pre-seizure or seizure state could 
enhance therapeutic possibilities [3] and thus improve the 
quality of the patients’ lives. 

From the perspective of seizure analysis, rats’ brain may 
be advantageous to understand seizure evolution, because it is 
much less complex than human.  The complex physiology of 
human brain has prevented seizure mechanism from being 
understood well.  In this sense, to analyze seizure evolution 
and further testing their anti-seizure methods on simpler brains 
than human, researchers have used rats’ [4-7]. 

In [5-7], Yang et al. developed an automatic seizure de-
tection system in rats’ electrocorticogram (ECoG).  This 
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automatic system was for their seizure termination experi-
ments by focal cooling [5, 6] and by optical suppression [7].  
In this paper, we propose an enhanced approach for the seizure 
detection in the rats’ recordings.  We perform time-frequency 
analysis on seizure onsets and offsets by using spectrograms 
and figure out more relevant frequency bands to detecting 
onsets and offsets.  Then, we develop an enhanced algorithm 
that can act faster and more reliably at onsets and offsets.  To 
demonstrate improvement, the proposed algorithm is 
compared with the previous approach [5-7], and additionally 
with another feature of line-length [8] that has been widely 
used for seizure detection. 

II. BACKGROUND 

In this section, we review the algorithm and system for 
automatic seizure onset and offset detection of the prior 
approach [5-7].  As shown in the top panel of Figure 1, this 
detection system was developed by using commercially 
available hardware and software, including LabVIEW 6.  The 
algorithm employed in the system is also illustrated in Figure 
1.  Using the moving window analysis [2, 3], the average of 
absolute values of spectral amplitudes in 5-35 Hz was 
extracted as a feature.  Then, a 2-point moving-average (MA) 
filter was applied for postprocessing, and the MA-filtered 
output was compared with the pre-defined threshold.  Finally, 
the system defined a seizure onset when it received 20 
consecutive outputs higher than a user-defined onset threshold.  
Similarly, it marked an offset with 6 consecutive outputs 
lower than an offset threshold.  The reader is referred to [6] for 
further details. 

 

 
Figure 1.  Top panel: LabVIEW front panel for the seizure detection system 

in [5-7].  Bottom panel: outline of their seizure detection algorithm.
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Figure 2.  Electrode position [5].  The ECoG from the red-circled electrode is 

the one used for the main analysis in this paper. 

 
(a) For onset detection 

 
 (b) For offset detection 

Figure 3.  Proposed enhanced algorithm for automatic seizure onset and 

offset detection. 

III. METHODS 

To improve the detection algorithm, we first analyzed the 

rats’ ECoG signals on seizure onsets and offsets using 

spectrograms in time and frequency domains.  Then, based on 

the analysis, we have developed an enhanced detection 

algorithm, which employs spectral power in bands of 14-22 

Hz and 7-45 Hz for onset and offset detection features, 

respectively, and uses a 2
nd

 order Kalman filter for postpro-

cessing. 

A. Dataset Description 

The dataset used in this paper is rats’ ECoG recordings.  
They were recorded from the adult male Sprague-Dawley rats 
by Yang et al for their prior work [5, 6], and all the recordings 
were taken in accordance to Washington University Animal 
Studies Committee approved protocols.  The ECoG usually 
started being recorded before injection of a seizure-inducing 
chemical compound, 4-aminopyridine, into the motor cortex 
and continued though their termination experiments.  For 
more details, refer to [5, 6]. 

The ECoG signals analyzed in this paper are differential 
potentials, a bipolar montage.  It was measured at a screw 
electrode, placed as shown in Figure 2, over another electrode 
installed symmetrically on the other hemisphere.  The 
sampling rate was 200 Hz.  25 seizure events in 4 continuous 

recordings, totaling approximately 95-min long, have been 
analyzed in this paper.  Seizure onsets and offsets were jointly 
identified by two of the authors (Yang and Park).  For onset 
identification, specific ECoG samples were marked, but 
seizure offsets were identified in approximate time periods.  
This is because offset detection is a much less critical issue 
than onset. 

B. Enhanced seizure onset and offset detection algorithm 

The proposed enhanced algorithm for seizure onset and 
offset detection is as outlined in Figure 3.  It consists of feature 
extraction of spectral power in onset/offset-relevant bands, 
Kalman-filtering for postprocessing, and comparison with a 
pre-defined threshold. 

For feature extraction, we have selected spectral power, 
rather than spectral amplitudes.  Specifically, we have used the 
spectral power in 14-22 Hz for onset detection and that in 7-45 
Hz for offset detection.  As illustrated in Figure 4, we have 
observed typical patterns in spectrograms on onsets and 
offsets: sudden and intense increases in power in 14-22 Hz 
right after the onsets and obvious declines in power in 7-45 Hz 
around the offsets.  The spectral power is extracted in a 
window of 128 ECoG samples with half-overlap of the prior 
window; we have used the same moving-window analysis 
approach as the previous one.  The spectral power is calculated 
by bandpass-filtering ECoG samples and squaring the 
bandpass-filtered amplitudes in time domain. 

The 2
nd

 order discrete-time Kalman filter is used for post-
processing.  The Kalman filter is expected to smoothen out 
sudden and abrupt changes in features and thus reduce the 
number of potential false alarms.  In this sense, the standard 
deviation of the observation noise σv in Kalman-filtering has 
been selected to be much larger than that of the process noise 

σw: 
  

  
      for onset and 

  

  
      for offset detection. 

C. Additional feature of line-length for comparison 

To demonstrate how the spectral power features in our 

algorithm may outperform the others, we have additionally 

tested the line-length feature [8-10]: 
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where LL(n) is the line length, x(k) the k
th 

signal in a window 

of N samples, and K is the normalization constant. 

 

 

(a) Onset 
 

(b) Offset 

Figure 4.  Examples of ECoG recordings in top and their corresponding spectrograms in bottom (a) on onsets and (b) on an offset 
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D. ROC analysis and AUC 

Receiver operating characteristic (ROC) analysis is a 
simple but powerful statistical method that uses a plot of true 

positive rate (
  

     
)  as a function of false positive rate  

(
  

     
) where TP, FN, FP, and TN stand for the number of 

true positives, false negatives, false positives, and true 
negatives, respectively.  To achieve ROC curves in this paper, 
100 threshold values have been selected that are equally 
allocated between the maximum and minimum of the values 
to be analyzed.  Also, we have quantified binary classifiers’ 
performance using the area under the curve (AUC), which 
integrates the area under the ROC curve. 

IV. RESULTS 

We first compared features that were employed in the 
previous and proposed algorithms for onset detection as well 
as line-length.  For efficient comparison, the features were 
tested on 25 pieces of partial ECoG recordings, each of which 
contains recordings from 30-sec prior to a seizure event to 
13-sec after it.  Then, we tested our algorithm on a 
12.6-min-long continuous recording with 4 seizures. 

To compare the algorithms’ performance for onset detec-
tion objectively, we tested the postprocessed features that 
were actually used in the algorithms: 2-point mov-
ing-averaged spectral amplitudes in 5-35 Hz for the previous 
algorithm, Kalman-filtered spectral power in 14-22 Hz for the 
proposed algorithm, and additionally Kalman-filtered 
line-length.  Figure 5 is an example of a plot of one raw feature 
and its post processed output in the partial recordings after 
performing the ROC analysis with 100 threshold values.  

Figure 6 demonstrates visual comparison between the features 
tested on the same recording with an onset. 

Table 1 demonstrates the AUC calculation for the three 
features.  Our approach produced the AUC of 0.9407, only 
slightly less than the previous one’s AUC of 0.9476; however, 
this was caused by the AUC estimation based on the number 
of windows, not on the number of seizure events.  Table 1 also 

shows sensitivity (
  

     
), the number of false positives, and 

the average latency between actual onsets and alarms 
generated by the algorithm with two selected threshold values.  
One threshold value was chosen as the lowest number where 
the algorithm can achieve 100% sensitivity with no false 
positives.  The other was the lowest value that resulted in the 
algorithm producing the fewest false positives with 100% 
sensitivity. 

Combining the onset detection approach with the offset 
one, which uses spectral power in 7-45 Hz for the feature and 
the Kalman filter for postprocessing, we tested our proposed 
algorithm on a continuous recording, as shown in Figure 7. 

Table 1.  Performance comparison in postprocessed features 

Feature AUC 
Thres

hold 

Sensitivity  

& # FPs 

Ave. 

latency 

(sec) 

2-pt MA-filtered spectral 

amplitude in 5-35 Hz 
0.9476 

0.55 100%, no FP 3.23 

0.41 100%, 4 FPs 2.26 

Kalman-filtered spectral 

power in 14-22 Hz 
0.9407 

0.0278 100%, no FP 2.10 

0.0147 100%, 2 FPs 1.72 

Kalman-filtered 

line-length 
0.9251 

0.033 100%, no FP 2.62 

0.031 100%, 2 FPs 2.48 

 

            
Figure 5.  Left panel: raw features of spectral power in 14-22 Hz in cyan and their Kalman-filtered values in blue for the proposed algorithm.  Logic high and 

low in red represent “on seizure events” and their pre-states, respectively.  Right panel: ROC analysis for the postprocessed values in the left panel. 

 
(a) Spectral amplitudes in 5-35Hz 

 
 (b) Spectral power in 14-22 Hz 

 
(c) Line-length 

Figure 6.  Comparison of features on the same onset.  Raw features are in cyan; their postprocessed ones in blue; and, their actual seizure states in pink.  Given 

threshold values in black, “bumpy” outputs indicated by the arrows may cause false detections.  Note that spectral power in 14-22 produces the most even 

outputs in the pre-seizure state, so that it can lead to the fewest false alarms.
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Figure 7.  Seizure onset and offset detection by the proposed algorithm in a continuous recording.  Top panel: 12.6-min-long ECoG recording with 4 seizure 

onsets at 84.0, 264.4, 581.6, and 660.5-sec ,and their offsets approximately at 180, 538, 625, and 740-sec.  Middle panel: the onset feature of spectral power in 

14-22 Hz in green and the offset one in 7-45 Hz in pink.  Bottom panel: final binary outputs in black by the onset and offset threshold values of 0.0278 and 
0.001, respectively.  For stable offset detection, an offset was declared when the postprocessed offset features kept lower than the threshold five times in a row.

V. DISCUSSIONS 

We have developed an enhanced algorithm for automatic 
seizure onset and offset detection in rats’ ECoG recordings.  It 
outperforms a prior algorithm in following ways.  First, the 
proposed algorithm employs spectral power in the band of 
14-22 Hz for its onset feature.  We observed that the frequency 
band in 14-22 Hz acts more relevantly and robustly to onsets 
than the band in 5-35 Hz that was employed in the previous 
algorithm (see Figure 4).  Furthermore, using spectral power is 
more advantageous to onset detection than spectral amplitude.  
Because power is proportional to square of amplitude, the 
spectral power feature can enlarge spectral differences 
between pre-onsets and onsets. 

Using the Kalman-filtered feature of spectral power in 
14-22 Hz was more effective for onset detection than the other 
approaches.  For example, as illustrated in Figure 6, the 
Kalman-filtered output in blue in the middle panel was the 
most flat and stable with distinguishable values at the onset.  
Also, in Table 1, the proposed feature produced only two false 
positives, when the threshold value dropped approximately 47% 
of the lowest threshold value that resulted in no FPs with 100% 
sensitivity.  The other two features, spectral amplitude in 5-35 
Hz and line-length, produced four and two FPs, when the 
lowest threshold values with no FPs and perfect sensitivity 
decreased approximately 25% and 6%, respectively. 

Furthermore, for effective detection, the proposed algo-
rithm used two different features: spectral power in 14-22 Hz 
and 7-45 Hz for onset and offset detection, respectively.  The 
previous algorithm employed one single feature for detecting 
both, so that it performed less effectively.  Nonetheless, while 
our algorithm had different parameters for onset and offset 
detection, including frequency bands in feature extraction and 
noise ratios in Kalman-filtering, our algorithm requires a 
single structure.  Ours consists of a band-pass filter, summa-
tion of amplitudes in time domain, the Kalman filter, and a 
comparator.  For different detection of onset and offset, the 
system may just need to modify the parameters in the 
components.  Thus, the system’s complexity may not increase 
even though it employs two separate features. 

Lastly, we reduced the system’s complexity remarkably by 
not using the fast Fourier transform (FFT) computation.  In the 
previous algorithm, the FFT computation was required, 

because it used spectral amplitudes for its feature.  However, 
the proposed algorithm employs spectral power, which can be 
estimated by bandpass-filtering and squaring band-passed 
amplitudes in time domain (refer to Parseval’s theorem).  
Because the feature is calculated in time domain, the FFT 
computation that has high complexity is no longer necessary.  
Additionally, replacing the simple 2-point moving-average 
filter with 2

nd
 order Kalman filter for postprocessing may not 

increase the system’s complexity much: the 2
nd

 order Kalman 
filter  just requires 7 multipliers and 18 adders.  Our proposed 
algorithm may be much more favorable, when seizure 
detection comes to a power-consumption-sensitive device, 
such as an implantable device. 
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