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Abstract—Seizures are events that spread through the brain’s 

network of connections and create pathological activity. To 

understand what is occurring in the brain during seizure we 

investigated the time progression of the brain’s state from 

seizure onset to seizure suppression. Knowledge of a seizure’s 

dynamics and the associated spatial structure is important for 

localizing the seizure foci and determining the optimal location 

and timing of electrical stimulation to mitigate seizure 

development.  

In this study, we analyzed intracranial EEG data recorded in 

2 human patients with drug-resistant epilepsy prior to 

undergoing resection surgery using network analyses. 

Specifically, we computed a time sequence of connectivity 

matrices from iEEG (intracranial electroencephalography) 

recordings that represent network structure over time. For each 

patient, connectivity between electrodes was measured using the 

coherence in the band of frequencies with the strongest 

modulation during seizure. The connectivity matrices’ structure 

was analyzed using an eigen-decomposition. The leading 

eigenvector was used to estimate each electrode’s time 

dependent centrality (importance to the network’s connectivity). 

The electrode centralities were clustered over the course of each 

seizure and the cluster centroids were compared across seizures. 

We found, for each patient, there was a consistent set of 

centroids that occurred during each seizure. Further, the brain 

reliably evolved through the same progression of states across 

multiple seizures including characteristic onset and suppression 

states.  

I. INTRODUCTION 

Epilepsy affects 50 million people worldwide [1], and 
30% remain drug-resistant [2]. Although seizure is usually 
considered to be a hypersynchronous state that entrains 
different regions of the brain, more recent research suggests 
the dynamics of seizure are more complex [3]. Earlier work 
on the structure of brain activity during seizure activity 
focused on classifying different types of seizures. These 
studies quantified the time dependent properties of seizures 
either through supervised methods and visual inspection [4] or 
through measuring the spectral properties of scalp and 
intracranial EEG recordings [5]. In Schiff et al. [6], it was 
found that seizures had distinct dynamical states using 
canonical discrimination analysis in both scalp and 
intracranial recordings. They found in most cases initiation 
and termination stage dynamics that were distinct from the 
dynamics of the middle of seizures. There has also been 
modeling results using nonlinear models of the cortex that 
indicate that seizure may result from the presence of global 
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bifurcations in the chaotic dynamics of the brain that are 
capable of generating multistable states [7-8]. This 
multistability could generate a progression of seizure states 
more complex than merely the seizure focus driving the rest 
of the brain into a synchronous state. Derchansky et al. [9] 
studied in vitro seizure activity in hippocampus slices using 
both electrode recordings and voltage sensitive dye. They 
found bidirectional seizure activity between different regions 
of the hippocampus. This result also suggests that seizure is a 
dynamic process with feedback between regions rather than a 
passive unidirectional event. 

Recently, the application of network analysis to the study 
brain activity has proven to be a powerful technique for better 
understanding the complex interactions that occur between 
brain regions [10] and specifically to the study of seizures [3]. 
Schindler et al. [11] studied the temporal evolution of the 
multivariate correlation structure in seizures recorded from 60 
patients. They found using the eigenvalue spectrum that the 
correlation decreases during the first half of seizure and 
increases toward termination. Using a network analysis of the 
clustering coefficient and path length during seizure [12] 
found that during seizure the brain became more organized in 
comparison to interictal periods. Ortega et al. [13] studied the 
synchronization properties between electrodes using multiple 
measures and found clusters of synchronized activity in 
patients with temporal lobe epilepsy that may be involved in 
the neuronal circuits associated with seizure. Kramer et al. 
[14] also used a network analysis of electrode recordings in 
humans during seizure and found that the connectivity 
changes during seizure. They found an increase in coupling at 
seizure onset compared to interictal periods and in [15] found 
that the topology of the network progressed through different 
states during seizure. 

Here, we further develop the network analysis of iEEG 
data during seizure states by examining the eigenvectors of 
the network connectivity matrix. But, rather than treat the 
eigenvectors only as an abstract representation of the brain 
state, we exploit the property that they are related to the 
immediate features of the network through their interpretation 
as measures of the network’s eigenvector centrality. This 
method has the advantage of incorporating information from 
all electrodes rather than pair-wise techniques and is 
computationally more efficient than social network measures. 

II. METHODS 

A. Experimental Data 

We analyzed data collected from two patients (previously 
monitored with intracranial electrodes as part of their pre-
surgical evaluation at the Johns Hopkins University Epilepsy 
Center) in this study. Patient A was recorded continuously for 
5.58 days during which 3 clinical seizures were recorded. 
Patient B was recorded continuously over 5.55 days during 
which 4 clinical seizures occurred. The decisions regarding 
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the need for invasive monitoring and the placement of 
electrode arrays were made independently of this project and 
solely based on clinical necessity. Acquisition of data for 
research purposes was done with no impact on the clinical 
objectives of the patient stay.   
 Intracranial recordings are typically used when scalp or 
sphenoidal-ictal records do not indicate a clear lateralized 
seizure onset, if functional mapping is required because of the 
proximity of eloquent areas to a planned resection, or if 
further seizure localization (e.g. within the frontal lobe) is 
required. Patients have subdural grid arrays, subdural strips or 
depth electrode arrays in various combinations as determined 
by the clinical assessment. Subdural grids have 20-64 contacts 
per array and are used in combination as indicated along with 
subdural strips (4-8 contacts) or depth arrays. Intracranial 
contact locations are documented by post-operative CT and 
co-registered with MRI. Since 2001, about 20-30 patients per 
year have required invasive monitoring with subdural grid 
arrays for assessment of partial seizures. The data previously 
recorded for clinical purposes are stored in a database 
compliant with Health Insurance Portability and 
Accountability (HIPAA) regulations.  
 

 
Figure 1: Schematic of intracranial EEG data analysis. 

B. Data Analysis 

Figure 1 illustrates the data processing steps undertaken to 
determine the centrality, or importance, of nodes in the iEEG 
network during seizure. We describe each step of the 
processing below. 

B1. Determining the Frequency Band for Each Patient 
(Figure 1A) 

For each patient the mean inter-ictal power was computed 
using nonoverlapping 3sec windows from all non-annotated 
inter-ictal recordings. The spectrograms of the recordings 
during all seizures were normalized by the mean inter-ictal 
power spectrum to generate the r-spectrum, defined as 
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During seizure, the r-spectrum was equal to one for 
frequencies that did not modulate and greater than one for 
frequency that increased during seizure relative to the inter-
ictal activity. The r-spectrum was analyzed according to the 

mean over the traditional EEG frequency bands (Delta 1-4Hz, 
Theta 4-8Hz, Alpha 8-13Hz, Beta 13-25Hz, Gamma 25-90Hz, 
and High Gamma 90-200Hz). The frequency band that 
showed the greatest modulation across all seizures was 
selected to form the connectivity matrices as described in 
section B2. 

B2. Computing Network Connectivity over Time (Figure 1B) 

The network connectivity was measured by computing all 
pairwise coherences, Cij, between electrodes and the averaged 
over the largest modulated frequency band, 
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where Pi is the Fourier transform of the time series recorded at 
electrode i, Pii and Pjj are the power at electrodes i and j, and 
Pij is the cross-power. These pairwise coherences were 
organized into a connectivity matrix that described the entire 
network. Connectivity matrices were computed every second 
using a sliding 3 sec window for each estimate. The diagonal 
of each connectivity matrix was set to be all zeros to indicate 
that each electrode is not considered to be connected to itself.     

Across the recordings there was a static dominant set of 
coherences present in the data. In the interest of measuring the 
changes in connectivity during seizure, each entry in the 
connectivity matrices were standardized (subtract the mean 
and divide by the standard deviation) using their inter-ictal 
activity. After standardizing, each entry in the connectivity 
matrix was positive or negative reflecting the number standard 
deviations the instantaneous coherence was above or below 
that pair of electrodes’ mean coherence. In order to retain the 
interpretation as a connectivity matrix, whose values must be 
positive, the standardized entries were transformed using an 
inverse logit function,  
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which maps the real numbers to the interval [0,1]. 

B3. Computing Eigenvector Centrality (EVC) over Time 
(Figure 1C) 

The importance of each electrode to the network connectivity 
was measured by the strength and number of connections it 
makes with other electrodes referred to as centrality. We used 
the eigenvector centrality (EVC) to measure the connectivity 
of each electrode. The EVC of an electrode is defined as the 
sum of the EVCs of all other electrodes weighted by their 
connectivity. The EVC of all electrodes is computed 
implicitly as 

       !"# ! ! !!
!!

!!"
!

!!! !!"#!!!,   (4.) 

where A is the connectivity matrix, ! is the leading eigenvalue 
of A and the EVC is then the leading eigenvector of A. The 
leading eigenvectors of connectivity matrices were calculated 
numerically at each second during the recordings from the 
connectivity matrices. The dynamics of the centralities were 
used to define the network state. In contrast to a multivariate 
model, the leading eigenvector of Aij is a computationally 
efficient method to identify the nodes that are most influential 
on the network as a whole. The centrality is solved implicitly, 
describing the simultaneous dependence among nodes. While 
in a multivariate model the predictor is an explicit function of 
a collection of regressors.  

A.

B.

C.

D.
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B4. Determining the Seizure States (Figure 1D) 

For each of the patients, the time dependent EVCs were used 
to infer a progression of brain states during the course of 
multiple seizures. The discrete seizure states were found by 
using a K-means algorithm. The summed distance of each 
data point to its assigned centroid was computed for a range 
of number of clusters, K. The number of clusters was the 
smallest value of K for which the summed distance showed 
only a small change with the addition of more clusters. The 
cluster centroids were vectors whose entries were the 
centralities of the set of electrodes. The centroids of the 
clusters for each seizure were compared with those from all 
other seizures in the same patient and determined to be the 
same if their projection after being normalized was greater 
than 0.95. After identifying corresponding centroids between 
different seizures, the progression of states in multiple 
seizures was compared with a common set of patient specific 
centroids. 

III. RESULTS 

The step-by-step analysis of the seizure states for one patient 
(Patient A) is described in detail. The results from a second 
patient (Patient B) are also summarized. Both patients had 
seizures that originated in the temporal lobe and all seizures 
examined here began as complex partial seizures that then 
progressed to generalized seizures. 

C1. Seizure Centrality Analysis of One Seizure 

In Figure 2, the steps involved in the analysis of one seizure 
recorded in Patient A are shown to demonstrate our method. 
In Figure 2A, the unprocessed voltage recordings from a 
selection of the total number of electrodes (88 total electrodes) 
are plotted (seizure onset occurred at t = 2773s and 
termination at t = 3140s). In Figure 2B, the EVCs for each 
electrode as a function of time are plotted during the seizure. 

The summed distances of each data point from its centroid are 
plotted as a function of K, the number of clusters. The 
summed distance has a break at four clusters, which was used 
as the total number of clusters for this seizure (each seizure 
was allowed to have a different number of clusters). In Figure 
2D the EVCs (from Figure 2B) are shown grouped into four 
clusters. 

 C2. Seizure Centrality Analysis of Two Patients 

In Figure 3, the time progression of the brain states of Patient 
A (described in Section B) and of a second patient labeled, 
Patient B (94 total electrodes) are described. For each patient 
multiple seizures were examined. After clustering each 
seizure, we took the inner product of all normalized centroids 
Once all corresponding centroids were found and related 
across seizures we then refer to them as ‘states’ (If a centroid 
only appears in one seizure and is not repeated, it is still 
considered a state but one that only occurs in one seizure). On 
the left hand side of Figure 3 the results for Patient A are 
plotted. For Patient A all centroids appeared in multiple 
seizures. All three seizures analyzed began in the State 1, 
progressed to State 2 and returned to State 1. At this point, 
seizures 2 and 3 visited State 3 and State 4 while seizure 1 
remained in State 1. All three seizure returned to State 1 at 
suppression.  

On the right hand side of Figure 3 the results from Patient B 

 

Figure 2: A) Voltages from electrodes on the seizure focus during seizure. B) 
The time dependent eigenvector centralities (EVC) of each electrode during 
seizure. C) Summed distance of all data points from their respective centroids. 
D) The clustered EVCs using four clusters. 

are plotted. As was the case for Patient A, all centroids 
appeared in multiple seizures. Three of the four seizures 
began in State 5 and progressed to State 1, while seizure 2 
began directly in State 1. Similar to Patient A, all four seizures 
followed very similar dynamics, across all seizures there 
existed centroids that consistently appeared in different 
seizures, and all seizures terminated in the same state, State 3. 
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Figure 3: Results of the clustering of multiple seizures in two patients. 

IV. DISCUSSION 

This analysis revealed that, within a patient, the dynamics of 
seizures have very regular structure. Although the timing of 
state changes in each seizure is not identical, the progression 
through states shows a consistent pattern. Further, in both 
patients there were characteristic seizure entry and exit states. 
The properties of these states may contain information about 
how seizures are initiated and terminated. 

The structure of seizure dynamics and the associated 
centralities of each state may also be used to identify the 
seizure focus and guide the placement of electrodes for 
seizure intervention using electrical stimulation. 
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