
 

 

 

  

Abstract— We propose to construct an intelligent system for 
clinical guidance on how to effectively use power wheelchair tilt 
and recline functions. The motivations fall into the following two 
aspects. (1) People with spinal cord injury (SCI) are vulnerable 
to pressure ulcers. SCI can lead to structural and functional 
changes below the injury level that may predispose individuals 
to tissue breakdown. As a result, pressure ulcers can 
significantly affect the quality of life, including pain, infection, 
altered body image, and even mortality. (2) Clinically, 
wheelchair power seat function, i.e., tilt and recline, is 
recommended for relieving sitting-induced pressures. The goal 
is to increase skin blood flow for the ischemic soft tissues to 
avoid irreversible damage. Due to variations in the level and 
completeness of SCI, the effectiveness of using wheelchair tilt 
and recline to reduce pressure ulcer risks has considerable room 
for improvement. Our previous study indicated that the blood 
flow of people with SCI may respond very differently to 
wheelchair tilt and recline settings. In this study, we propose to 
use the artificial neural network (ANN) to predict how 
wheelchair power seat functions affect blood flow response to 
seating pressure. This is regression learning because the 
predicted outputs are numerical values. Besides the challenging 
nature of regression learning, ANN may suffer from the 
overfitting problem which, when occurring, leads to poor 
predictive quality (i.e., cannot generalize). We propose using the 
particle swarm optimization (PSO) algorithm to train ANN to 
mitigate the impact of overfitting so that ANN can make correct 
predictions on both existing and new data. Experimental results 
show that the proposed approach is promising to improve 
ANN’s predictive quality for new data. 

I. INTRODUCTION 

Pressure ulcers pose serious threats to the quality of life for 
people with spinal cord injury (SCI) [1, 2]. The reason that 
people with SCI are vulnerable to pressure ulcers is that SCI 
can lead to structural and functional changes below the injury 
level that may predispose individuals to tissue breakdown [3]. 
Due to the blockade of the sensory pathway to the brain, 
people may lose the protective mechanism for avoiding 
prolonged ischemic insults to the compressed tissues. Loss of 
autonomic nervous system control over the cardiovascular 
system weakens the vasodilatory response to loading pressure 
[4]. All these factors are directly responsible for the high 
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occurrence rate of pressure ulcers in individuals with SCI [5, 
6]. 

Reddy et al. [7] found that periodically repositioning 
patients was a key element in the majority of the pressure ulcer 
prevention protocols. The purpose is to allow the ischemic soft 
tissues to develop sufficient blood flow and thus avoid 
prolonged tissue ischemia, which is considered to be the main 
cause of pressure ulcers [8]. In practice, clinicians recommend 
periodically adjusting power wheelchair tilt and recline angles 
so that sitting-induced pressures can be relieved and the 
ischemic soft tissues can be re-perfused [9, 10].  

However, how to effectively use wheelchair power seat 
functions to enhance skin blood flow is still 
under-investigated. Our previous study [11] showed that there 
were no generic rules that were suitable for all the wheelchair 
users on how to effectively use wheelchair power seat 
functions. The skin blood flow of people with SCI responded 
very differently to wheelchair tilt and recline settings. As a 
result, the clinical guidance on wheelchair tilt and recline 
usage should be customized for individual persons. We 
attempted to address this issue by using the artificial neural 
network (ANN) to classify favorable tilt and recline settings 
that could result in skin perfusion increase for individual 
persons [11]. The limitation of that approach, however, is that 
it can only make discrete classifications, namely, positive, 
neutral, or negative. It cannot quantify the extent of the 
positive or negative response to a given tilt and recline setting. 
Therefore, it cannot predict the optimal tilt and recline angles, 
which can increase skin perfusion the most. 

We propose using ANN to predict the values of skin 
perfusion change for individual persons with SCI. This study 
is different from our previous approach [11] in that ANN will 
predict numerical values instead of discrete classifications. 
This is the so called regression learning, which is very 
challenging. The back-propagation algorithm (BP) [12] has 
been widely used to train ANN. However, BP tends to suffer 
from the overfitting problem, in which ANN cannot generalize 
to predict new data (i.e., poor predictive ability) even though it 
can predict well the existing training data. In order to mitigate 
the impact of overfitting, we propose to use the particle swarm 
optimization (PSO) algorithm [13] to train ANN. PSO has 
emerged as an important population-based stochastic 
optimization algorithm inspired by flocking birds or schooling 
fish. It tends to converge faster than other optimization 
algorithms, such as the well-known genetic algorithm [14], 
while maintaining similar or better optimization quality. 
Experimental results demonstrate that the proposed approach 
is very promising: The ANN trained by PSO generalizes 
significantly better than the one trained by BP. By combining 
our previous classification approach [11] and the proposed 
PSO-based regression approach, our intelligent system can 
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cross-validate the outputs of the two approaches to ensure 
even better prediction quality. 

In the rest of this paper, we briefly overview ANN and the 
PSO algorithm in Section II, and then describe the method 
designed to collect skin perfusion data and the method to train 
ANN in Section III. Finally, we present the experimental 
results in Section IV, discuss the proposed method in Section 
V, and conclude the paper in Section VI. 

II. BACKGROUND 

A. Artificial Neural Network  
Pictorially, an artificial neural network is a layered graph 

consisting of nodes (i.e., neurons) organized into layers and 
edges (i.e., weighted connections) connecting nodes between 
layers. Although there is no limitation on the number of layers, 
in practice, we do not choose a network with more than four 
layers because an ANN with four layers can learn any function 
with arbitrary accuracy [15]. After a network structure is 
determined, the weights of the connections will determine the 
quality of learning. Therefore, an appropriate training 
algorithm is very important to train ANN through adjusting 
the weights. 

B. Particle Swarm Optimization (PSO) 
In PSO, a particle is identified by its position and 

velocity in a multi-dimensional space. The position of a 
particle encodes a potential solution to the problem to be 
solved. The initial population of particles is often randomly 
generated. PSO needs a fitness function to evaluate the 
performance of particles. PSO proceeds in iterations and 
terminates when the stop criteria are satisfied. In each 
iteration, the particle with the best fitness value is considered 
as being located at the “global best” position (gBest). In 
addition, each particle keeps its personal best position (pBest) 
in history. Knowing both gBest and pBest, a particle pi can 
“fly” towards the gBest and pBest with a certain velocity vi[t] 
= (vi

1[t], vi
2[t],…, vi

N[t]) at time t in an N dimensional space. 
Therefore, the updated velocity (vi) and position (posi) in the 
dth dimension at time t + 1 are calculated by [13]: 

vi
d[t+1] = vi

d[t] + l1 × γ1 × (pBesti
d[t] −            

        posi
d[t]) + l2 × γ2 × (gBestd[t] − posi

d[t])   (1) 

posi
d[t+1] = posi

d[t] + vi
d[t+1]         (2) 

where γ1 and γ2 are two random numbers in the range of (0, 1); 
l1 and l2 are learning factors. After all particles have updated 
their positions, the fitness function is used again to evaluate 
the performance of each particle. gBest as well as the personal 
pBest might be changed. Then, the particles will fly towards 
the new gBest and pBest. This process will repeat until 
meeting the stop criteria. 

III. METHOD 

An experimental study was conducted to establish the 
relationship between wheelchair power seat function usages 
and the resulting skin blood flow responses [4]. The study 
involved 11 wheelchair users with SCI consisting of 1 
African American, 1 American India, and 9 white 
participants. More details regarding the experiment protocol 

and participants’ information can be found in [4]. In this 
section, we only briefly introduce how data were collected in 
the experiment.  

We considered the clinically recommended tilt (i.e., 15°, 
25°, and 35°) and recline (i.e., 100° and 120°) angles in our 
study. As a result, a total of 6 tilt and recline testing 
conditions were created. Each testing condition lasted for 5 
minutes to relieve the seating pressure, which was caused by 
sitting upright for 5 minutes without performing tilt or 
recline. Skin perfusion was continuously measured 
throughout the experiment. The skin perfusions measured in 
the aforementioned two 5-minute periods can help us 
determine the ratio of the skin perfusion change resulted from 
performing wheelchair tilt and recline. 

β = b1 / b0            (3) 

where b0 was the skin perfusion measured when the research 
subject sat upright for 5 minutes and b1 was the skin perfusion 
measured when wheelchair tilt and recline functions were 
performed in the next 5 minutes. 

A. Modeling Participants 
By nature, this is a feasibility study. We simplified the 

modeling of participants by considering attributes that were 
once reported to be related to the occurrence of pressure 
ulcers [16]. Specifically, we model a participant with 5 
attributes, namely, age (a), sex (s), level of injury (l), duration 
of the SCI (d), and completeness (c). Formally, a research 
participant is modeled with a 5-tuple 〈a, s, d, l, c〉.  

B. Modeling Inputs and Outputs 
By training ANN, we attempt to learn a function g: D → R. 

D is the input domain, in which each data item is modeled in a 
7-tuple, namely, 〈a, s, d, l, c, t, r〉, where a, s, d, l, c are the 5 
attributes discussed above; t and r represent a tilt and recline 
setting. All training data were obtained from the 11 
participants.  

R is the output domain, which contains the skin perfusion 
changes resulted from performing wheelchair tilt and recline 
functions, i.e., β in Equation (3). Therefore, given a 
participant 〈a, s, d, l, c〉 and a tilt and recline setting 〈t, r〉, the 
function g will predict the skin perfusion increase ratio β. 
This is regression learning since function g will predict the 
real values of β. 

C. Modeling Particles 
To use a particle to represent a solution to an ANN, we 

need to know the structure of the ANN, including the number 
of layers and the number of nodes in each layer, as well as the 
weights of connections between nodes. In this study, we used 
the network structure 7-7-1, i.e., 7 nodes in the input and 
hidden layers, respectively, and 1 node in the output layer. All 
the connections are ordered such that their corresponding 
weights can be put into an array. Therefore, a particle is 
modeled with a weight array. In our experiments, each 
population consists of 25 particles and the weight arrays are 

4649



 

 

 

randomly generated in the initial population. 

D. Fitness Function 
Figure 1 shows the algorithm for the fitness function. The 

fitness function takes two arguments, namely, a weight array 
p (i.e., a particle that represents a possible solution to the 
ANN) and the training data set D. Given a particle (i.e., 
weight array) p, the fitness function calculates the percentage 
of correct predictions against the entire training data D. 
Initially, the number of correct predictions is set to 0 (line 1).  

 

/*p is a particle represented by a weight array */ 
/*D is the training data set*/ 
Function  Fitness (p, D) 
1. correct ← 0 
2. for each data item i ∈ D do 
3.   predicted ← ANN(p, i) 
4.   if in_same_category(predicted, actual(i)) then 
5.           if(|predicted − actual(i)| < τ)  
6.    correct ← correct + 1.0 
7.           else 
8.            correct ← correct + 0.5 
9.           end if 
10.   end if 
11. end for  
12. return correct / sizeof(D) 

 
Figure 1. Fitness Function 

Since the ANN structure is fixed to be 7-7-1 in this study, 
the weight array p will enable the ANN to make predictions 
for each data item i in D (lines 2 and 3). The algorithm first 
checks whether the predicted value is in the same category as 
the actual value of i (line 4). To see why this step is necessary, 
let us see an example, in which the actual and predicted skin 
perfusion ratios for data item i are 1.10 and 0.95, respectively. 
Such a prediction is unacceptable because the actual value 
indicates that the corresponding tilt and recline are beneficial 
(since the skin perfusion increases) while the predicted value 
suggests that the tilt and recline setting could be harmful 
(since the skin perfusion decreases). On the other hand, if the 
predicted value is 1.25, although the absolute difference is the 
same as that of 0.95, this prediction is acceptable because it 
carries the same meaning as the actual value, i.e., the skin 
perfusion increases as a result of performing wheelchair 
power seat functions. 

In general, if the actual skin perfusion increase ratio (i.e., 
actual(i)) is greater than 1, it suggests that the corresponding 
tilt and recline setting is beneficial. If actual(i) is less than 1, 
the corresponding setting may be harmful. There is a third 
case, in which actual(i) is very close to 1. For example, if 
actual(i) = 0.995, then it is uncertain whether this is a true 
negative case. Hence, we set a threshold σ such that  

• if actual(i) > 1 + σ, then it is positive; 
• if 1 − σ ≤ actual(i) ≤ 1 + σ, then it is neutral; and 
• if actual(i) < 1 - σ, then it is negative. 

In this study, we set σ = 0.1 because the skin perfusion ratio β 
is in the range of [0, 2] and σ = 0.1 sets a reasonable range 
[0.9, 1.1] for the neutral cases. 

If the predicted and actual values are in the same category, 

the algorithm will check whether the difference is less than 
the threshold τ (line 5). If true, the algorithm increases the 
correct predictions by 1 (line 6). Otherwise, the algorithm 
only counts it as half-correct and increases the correct 
predictions by 0.5 (line 8). We set τ = 0.1 such that the 
predicted and actual values will be close. If the predicted and 
actual values are in different categories, they carry different 
meanings and are thus considered to be a wrong prediction.  

E. Two Experiments 
We perform two different experiments to examine the 

prediction quality and generalization capability of the trained 
ANN. In the first experiment, we use the entire data set to 
train the PSO-based ANN. After the training is finished, we 
test the trained ANN by using the same set of data. The 
disadvantage of this approach is that we cannot examine 
whether the trained ANN can generalize to predict new (i.e., 
unseen) data. 

The second experiment, called 11-fold cross-validation, is 
designed to examine the ANN’s generalization ability. We 
divide training data into 11 mutually exclusive folds. Each 
fold is only associated with a single human subject. We train 
the ANN with 10 folds and use the one that is left out to test 
the ANN. This experiment is performed 11 times on all the 
folds. Then, the averaged accuracy rate on all the folds will be 
used as the final accuracy. The benefit of this experiment is 
that we can always test the ANN with a new human subject. 

IV. RESULTS 
As a baseline, BP was used to train ANN to perform the 

same experiments. The purpose is to compare whether using 
PSO to train ANN was superior to using BP. For the first 
experiment that used the entire data set, the BP-based 
approach correctly predicted all the training data, i.e., the 
accuracy rate was 100%. In comparison, the PSO-based 
approach achieved an accuracy rate of 80.7%. Here, we have 
a stricter definition for “correct” predictions than the one 
defined in the fitness function in Figure 1. The criteria include 
(1) the predicted value should be in the same category as the 
actual value; (2) the absolute difference between the predicted 
and actual values should be less than 0.1; and (3) the half 
correct cases in Figure 1 are considered as wrong predictions.  

TABLE I 
EXPERIMENTAL RESULTS FOR 11-FOLD CROSS-VALIDATION 

Fold BP-based PSO-based 
#1 0% 50% 
#2 0% 50% 
#3 33.3% 33.3% 
#4 0% 33.3% 
#5 0% 83.3% 
#6 16.7% 66.7% 
#7 0% 50% 
#8 0% 100% 
#9 33.3% 50% 
#10 16.7% 50% 
#11 16.7% 50% 
Average 11% 56% 

 However, the ANN trained by BP suffered from serious 
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overfitting problems. Table I shows the experimental results 
on the 11-fold cross-validation. The ANN trained by BP 
generalized poorly on each fold. On average, its accuracy rate 
was only 11%. In comparison, the ANN trained by PSO 
generalized significantly better. Its average accuracy rate was 
56%.  

V. DISCUSSION 
To ensure a fair comparison, the BP- and PSO-based 

approaches used the same network structure for ANN, i.e., 
7-7-1. 

With the learned function g, we will be able to predict the 
optimal wheelchair tilt and recline settings that will result in 
the most significant skin perfusion increase. Given the ranges 
of commonly used tilt and recline angles, such as tilt at [15°, 
45°] and recline at [90°, 120°], we can design a simple 
algorithm by using function g to try all the combinations of 
tilt and recline angles in the ranges. The ones resulting in the 
largest output will be the candidate optimal settings. 
Formally, we can summarize the algorithm with the following 
formula: 𝑎𝑟𝑔𝑚𝑎𝑥〈𝑡,𝑟〉∈Γ  (g(a, s, d, l, c, t, r)), where Γ is the 
set of tilt and recline settings.  

Moreover, the learned function g can be used to 
cross-validate the outputs of another function f [11] that was 
designed to classify the skin perfusion changes into three 
discrete categories, i.e., positive (1), neutral (0), and negative 
(-1). Given a data item 〈a, s, d, l, c, t, r〉, we will be confident 
with the predictions in the following three cases:  

• g(a, s, d, l, c, t, r) > 1 + σ iff f(a, s, d, l, c, t, r) = 1;  
• g(a, s, d, l, c, t, r) < 1 − σ iff f(a, s, d, l, c, t, r) = -1; 

and  
• 1 − σ ≤ g(a, s, d, l, c, t, r) ≤ 1 + σ iff f(a, s, d, l, c, t, 

r) = 0. 
where “iff” means “if and only if”; σ is the threshold to 
separate neutral cases from the positive and negative cases as 
discussed in Section III.D. 

A. Study Limitations 
This study is a feasibility study since we only have data 

from 11 participants. We are recruiting more research 
participants to enroll in the study. In addition, the architecture 
of the ANN used in this study may not be optimal to generate 
the best results. Unfortunately, no general rules are available 
to find the optimal structure [15]. In the subsequent study, we 
will apply the trial-and-error approach to enumerate possible 
structures of ANN to find the optimal one. This approach is 
feasible because an ANN can learn any functions with 
arbitrary accuracies by a network with 4 layers [15]. 

VI. CONCLUSION 
In this paper, we employed a regression learning approach 

to determine a function g that can be used to predict the skin 
perfusion change as a result of performing wheelchair power 
seat functions. The PSO algorithm was used to train ANN to 
mitigate the impacts of overfitting. Experimental results 

showed that the ANN trained by PSO generalized 
significantly better than the one trained by BP. With the 
learned function g, we can predict the optimal wheelchair tilt 
and recline settings that may increase the skin perfusion the 
most. To ensure the prediction quality, we can use our 
previously learned classification function f [11] to 
cross-validate the outputs of the learned function g. With 
more training data becoming available, we expect that our 
intelligent system will be more accurate at providing clinical 
guidance on how to effectively use wheelchair tilt and recline 
functions for individuals with SCI. 

ACKNOWLEDGMENT 
This work was supported in part by the National Center for 

Research Resources and the National Institute of General 
Medical Sciences of the National Institutes of Health through 
Grant Number 8P20GM103447. 

REFERENCES 
[1] R. L. Johnson, et al., "Secondary conditions following spinal cord 

injury in a population-based sample," Spinal cord, vol. 36, pp. 
45-50, Jan 1998. 

[2] A. Gelis, et al., "Pressure ulcer risk factors in persons with spinal 
cord injury part 2: the chronic stage," Spinal Cord, vol. 47, pp. 
651-61, Sep 2009. 

[3] Y. K. Jan and D. M. Brienza, "Technology for pressure ulcer 
prevention," Topics in Spinal Cord Injury Rehabilitation, vol. 11, 
pp. 30-41, 2006. 

[4] Y. K. Jan, et al., "Effect of wheelchair tilt-in-space and recline 
angles on skin perfusion over the ischial tuberosity in people with 
spinal cord injury," Archives of physical medicine and 
rehabilitation, vol. 91, pp. 1758-64, Nov 2010. 

[5] R. W. Teasell, et al., "Cardiovascular consequences of loss of 
supraspinal control of the sympathetic nervous system after spinal 
cord injury," Archives of Physical Medicine & Rehabilitation, vol. 
81, pp. 506-16, 2000. 

[6] S. L. Garber, et al., "Pressure ulcer risk in spinal cord injury: 
predictors of ulcer status over 3 years," Archives of Physical 
Medicine & Rehabilitation, vol. 81, pp. 465-71, 2000. 

[7] M. Reddy, et al., "Preventing pressure ulcers: a systematic 
review," JAMA, vol. 296, pp. 974-84, 2006. 

[8] J. Nixon, et al., "Pathology, diagnosis, and classification of 
pressure ulcers: comparing clinical and imaging techniques," 
Wound Repair Regen, vol. 13, pp. 365-72, Jul-Aug 2005. 

[9] M. Lacoste, et al., "Powered tilt/recline systems: why and how are 
they used?," Assistive Technology, vol. 15, pp. 58-68, 2003. 

[10] S. M. Michael, et al., "Tilted seat position for non-ambulant 
individuals with neurological and neuromuscular impairment: a 
systematic review.," Clinical Rehabilitation, vol. 21, pp. 1063-74, 
2007. 

[11] J. Fu, et al., "Using Artificial Neural Network to Determine 
Favorable Wheelchair Tilt and Recline Usage in People with 
Spinal Cord Injury: Training ANN with Genetic Algorithm to 
Improve Generalization," in ICTAI, ed, 2011, pp. 25-32. 

[12] D. E. Rumelhart, et al., "Learning representations by 
back-propagating errors," Nature, vol. 323, pp. 533-536, 1986. 

[13] Y. Shi and R. C. Eberhart, "Empirical study of particle swarm 
optimization," presented at the Proc. Congr. Evolutionary 
Computation, Washington, DC. Piscataway, NJ, 1999. 

[14] S. Russell and P. Norvig, Artificial Intelligence: A Modern 
Approach, 2nd ed.: Prentice Hall, 2002. 

[15] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 
1997. 

[16] S. L. Garber, et al., "Pressure ulcer risk in spinal cord injury: 
predictors of ulcer status over 3 years," Arch Phys Med Rehabil, 
vol. 81, pp. 465-71, Apr 2000. 

4651


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

