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Abstract— The brain-machine interface (BMI) has been used
as a communication tool for a person who has lost body
function. Extracting functional information from brain signals
is important for controlling a BMI in a realistic and natural
way. For a BMI, a pattern classification algorithm, such as
linear discriminant analysis (LDA) and support vector machine
(SVM), has commonly been used. However, the classifier using
brain signals tends to suffer from overfitting because there
are too many obtained features compared with the number of
samples. On the other hand, sparse logistic regression (SLR),
which has been proposed as a new pattern classification method
for brain signals, can select small number of features to
classify and interpret brain functions. Thus, overfitting can be
prevented using SLR. In this study, we measured functional
near-infrared spectroscopy (fNIRS) signals during isometric
arm movements in four directions and performed direction
classification. The features to classify force direction were
selected from obtained data sets using SLR and were used
in a SVM. We compared the types of fNIRS signals (OxyHb
and DeoxyHb) and feature selection methods. As a result,
the classification accuracy was highest when both OxyHb and
DeoxyHb were used as the features and both time and channel
were selected. The peak time of the signal, when the task ends,
and a few seconds after the task ends, were particularly well
selected.

I. INTRODUCTION

The brain-machine interface (BMI), which enables exter-

nal devices to be directly controlled by brain signals, has

been actively studied in recent years. Detailed analysis of

the underlying brain signals related to specific movements

is important for controlling a BMI in a realistic and natural

way. Previous studies on brain function have shown that it is

possible to estimate from brain signals by using pattern clas-

sification and decoding [1] [2]. Thus, the BMI is a promising

communication tool for a person who has lost body function

due to an injury or a disease such as amyotrophic lateral

sclerosis (ALS).

Noninvasive neuroimaging techniques include electroen-

cephalography (EEG), functional magnetic resonance imag-

ing (fMRI), and functional near-infrared spectroscopy

(fNIRS). fNIRS measures the concentration changes in oxy-

genated hemoglobin (OxyHb) and deoxygenated hemoglobin

(DeoxyHb) in cerebral blood flows, which may be associated

with neural activity. Unlike EEG, fNIRS is robust against

electrical artifacts. Additionally, the fNIRS system is simple

compared with the fMRI one. It is thus advantageous for

measuring brain function in daily life.

When performing pattern classification, machine learning

techniques, such as linear discriminant analysis (LDA) and
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support vector machine (SVM), have commonly been used.

In experiments measuring brain activity, there were too many

obtained features compared with the number of samples and

the classifier is prone to overfitting. To solve this problem,

sparse logistic regression (SLR) has been proposed recently.

SLR is able to reduce the ineffective features to classify. This

feature selection can prevent overfitting and estimate brain

function that contributed to the classification. This method

has been applied to discrimination of visual images from

fMRI signals [3] and estimation of finger pinch force from

fNIRS signals [4].

Previous studies show that it might be possible to estimate

the arm force direction from fNIRS signals [5] [6]. However,

investigation of the force directional information in fNIRS

signals was insufficient. In this study, we further investigated

this question by using SLR. In addition, we show that the

classification accuracy can be improved by using the selected

features of SLR into SVM.

II. EXPERIMENTAL METHODS

This study was approved by the ethics board of the Na-

gaoka University of Technology. Four healthy men assented

to and participated in the experiment. The task was an

isometric muscle contraction with a force of 15 [N] in one of

four directions: forward (F), backward (B), right (R), and left

(L) (Fig. 1). For right arm force measurement, we used a six-

axis force sensor (1FS-67M25A25-140, Nitta Corp, Japan).

The sampling period was 5 [ms].

To control the posture of the subjects during the tasks,

they were strapped to the chair with a belt. The heights of

the chair and armrest were set so that the right arm was

parallel to the upper surface of the desk. A force sensor was

set at the hand position, and the angle of the right arm was

105◦ as shown in Fig. 1.

Visual feedback was displayed on the screen to the subject
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as shown in Fig. 2. The small circle at the center represented

the cursor, which moved in response to input signals from

the force sensor. The cursor was blue when the force was less

than 14 [N], yellow when it was 15 ± 1 [N], and red when

it was more than 16 [N]. The screen displaying the feedback

was placed at the center of the subject’s visual field to avoid

the need for eye movement. The distance from the subject’s

eyes to the display was set to 95 [cm]. The cursor diameter

was 1.5 [cm] and the 15 [N] circle diameter was 25 [cm].

While the subject was doing the task, brain activity was

measured by fNIRS. To measure the brain activity during

right arm movement, fNIRS probes (to measure 24 channels)

were placed around C3 of the international 10-20 system to

cover the primary motor cortex of the left hemisphere. For

fNIRS measurement, we used a near-infrared imaging device

(OMM-3000, Shimadzu Corp, Japan). The sampling period

was 130 [ms].

The experimental task design is shown in Fig. 3. The

subjects performed the experiment over the course of five

days. Two sessions were done per day. A session consisted

of four blocks, and a block consisted of five trials for the

same force direction. A trial consisted of an 8 [s] pre-rest,

a 12 [s] task, and a 10 [s] post-rest. A total of 200 trials

were conducted in five days (50 trials for each direction).

To prevent inter-trial interference, a 30–60 [s] rest was given

between trials, and the next trial started after stabilization of

the fNIRS signals. The subject was verbally notified of the

force direction at each block end.

III. ANALYSIS

A. Pre-processing

We set the start time (0 [s]) as the time when the force

reached 3 [N] and set the end time as when it fell below 3

[N] to exclude differences in the start time between trials.

All data sets for each subject were evaluated by multiple

comparison of the force values. Data sets in which values

were significantly different from the average were not used

in the analysis. The force data used for the comparisons were

the average value from the start to the end of the movement.

The multiple comparison was performed using the Tukey-

Kramer method with the significance level set to 1%. On

average, 185 trials used in the analysis.

To remove noise in fNIRS signals, a gaussian temporal

filter (full width at half maximum is 1 [s]) was used. To

evaluate the concentration changes in hemoglobin between

rest and task, the mean value during pre-rest was subtracted

from the original signals. For the input features of the

classifier, temporal data of 18 [s], which was 6 [s] after the

end of the start movement, was used.

B. Classification

SVMs were used to estimate arm force direction. Three

different classifications were performed: FB-RL, which clas-

sifies FBRL data into FB class and RL class, F-B, which

classifies FB data into F class and B class, and R-L, which

classifies RL data into R class and L class. This method

required fewest classifiers when classifying four direction

data into four classes.

Measurement of OxyHb by fNIRS signals is often used

for the interpretation of brain function. However, DeoxyHb

may also provide brain information. Therefore, in this study,

we investigated and compared three types of fNIRS signals;

only OxyHb, only DeoxyHb, and both Hb.

If we select only force directional information from fNIRS

signals, the classification accuracy of the classifier should be

improved. In this study, we used SLR to select features then

force direction was estimated by SVM using the selected

features. By comparing the classification accuracy of SVM,

we investigated whether the force directional information is

contained in the selected features. Five-fold cross-validation

was repeated 20 times, and the mean value of classification

accuracy (total is 100 times) was used to evaluate force

directional information.

1) Support Vector Machine: In the SVM model, the

discriminant function is

f(x) = sgn

(

ℓ
∑

i=1

yiα
∗

i K(x,xi) + b∗

)

, (1)

where xi are the training data sets, yi are the desired outputs,

and K is the kernel function. The α∗

i are defined using a

quadratic programming problem.

max. W (α) =
ℓ
∑

i=1

αi −
1

2

ℓ
∑

i,j=1

αiαjyiyjK(xi,xj).

sub. to 0 ≤ αi ≤ C, i = 1, . . . , ℓ,

ℓ
∑

i=1

αiyi = 0.

(2)

C is an appropriate positive penalty parameter. When the sets

of support vectors I are 0 ≤ α∗

i ≤ C, the threshold level b∗

is given by the following equation.

b∗ =
1

|I|

∑

i∈I



yi −

ℓ
∑

j=1

yjα
∗

jK(xi,xj)



 . (3)

Sequential minimal optimization (SMO) was used to solve

for α∗

i and b∗. The linear kernel function is

K(x1,x2) = x
T
1
x2. (4)

2) Sparse Logistic Regression: In the SLR model, the

linear discriminant function separating two classes is rep-

resented by the weighted sum of each feature value:

f(x; θ) =
D
∑

d=1

xdθd + θ0, (5)
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where x = (x1, . . . , xD)t is the input feature vector and θ =
(θ1, . . . , θD)t is the weight vector. The possibility that the

input vector belongs to class C is given by

p =
1

1 + exp(−f(x; θ))
≡ P (C|x). (6)

Given N input-output data samples, the likelihood function

is expressed as

P (y1, . . . , yN |x1, . . . , xN ;θ) =
N
∏

n=1

pyn

n (1− p)1−yn , (7)

where yn is a variable such that y = 0 if the sample belongs

to class 1 and y = 1 otherwise. The θ that maximizes the

likelihood is calculated in two steps.

θstep :

E(θ) =
N
∑

n=1

{

ynθ
txn − log(exp(θtxn))

}

−
1

2
θ

tĀθ, (8)

αstep :

ᾱd =
1 − ᾱds

2

d

θ̄d
2

, (9)

where Ā is a diagonal matrix whose diagonal elements

are represented by ᾱd. Most of the estimated αd diverges

to infinity, and the corresponding weights θ become zero

through iteration of the two steps above. As a result, most

of the features were eliminated, and we obtained a sparse

model.

C. Feature Selection with SLR

SLR can only select features that contribute to the clas-

sification from the vast amount of features. However, the

number of features in the time dimension selected by SLR

are very few, which was about 10-20. Therefore, we selected

features by the method shown in Fig. 4. First, feature

selection was performed by SLR for 100 data sets (feature

dimension is 18 [s] × 24 ch) that were created by five-fold

cross-validation repeated 20 times. Then, the frequency of

feature selection was obtained by counting the number of

0.5

0

1

S
el

ec
ti

o
n

 r
at

e

0

0
.5 1

Selection rate

Time [s]

C
h

an
n

el
 n

u
m

b
er

0 2 4 6 8 10 12 14 16 18

4

8

12

16

20

24

100

Time [s]

C
h

an
n

el
 n

u
m

b
er

0 2 4 6 8 10 12 14 16 18

4

8

12

16

20

24

Selected features with SLR Count of selected features

Selection rate of time dimension
S

electio
n

 rate o
f ch

an
n

el d
im

en
sio

n

Summation

Fig. 4. Features selection methods.

selections for each feature. In addition, the selection rate

of each time was obtained by summing the count number

in the channel dimension, and the selection rate of each

channel was obtained by summing the count number in

time dimension. In this study, to investigate where the force

directional information is in the feature space, we performed

three types of selection: time selection to select only the time

(selected feature dimension is selected times × all channels),

channel selection to select only the channel (selected feature

dimension is all times × selected channels), and direct

selection to select the time for each channel. The threshold

of time selection was 30 [%] of the selection rate, threshold

of channel selection was 30 [%], and direct selection was

each feature more than twice, was used as input to SVM.

IV. RESULTS

Table I shows the classification accuracy on average of

all subjects for each method. Table II shows the number of

input features for classification.

Comparing the type of input features, the classification

accuracy was in the order of DeoxyHb < OxyHb < both Hb.

Interestingly, for the combination of OxyHb and DeoxyHb,

which has a low classification accuracy, the accuracy was

further improved by a few %.

Comparing the classification methods, the classification

TABLE I

CLASSIFICATION ACCURACY ON AVERAGE OF ALL SUBJECTS.

Methods
OxyHb DeoxyHb Both Hb

FB-RL [%] F-B [%] R-L [%] FB-RL [%] F-B [%] R-L [%] FB-RL [%] F-B [%] R-L [%]

SVM 90.05 61.94 72.97 77.88 60.46 62.22 90.18 64.80 73.87

Time selection 90.43 65.28 75.80 79.56 69.46 69.51 90.57 71.09 75.89

Channel selection 91.01 65.46 75.34 79.32 67.36 70.87 92.34 72.36 79.42

Direct selection 97.27 92.25 95.06 95.06 95.54 96.71 98.58 96.72 98.37

TABLE II

NUMBER OF INPUT FEATURES ON AVERAGE OF ALL SUBJECTS.

Methods
OxyHb DeoxyHb Both Hb

FB-RL F-B R-L FB-RL F-B R-L FB-RL F-B R-L

SVM 3336 3336 3336 3336 3336 3336 6672 6672 6672

Time selection 1008 930 1350 1068 1278 1008 2088 2016 2388

Channel selection 1946 2398 1633 2016 2155 1911 2016 2259 2085

Direct selection 179 227 185 266 218 179 161 217 173
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Fig. 5. Results of direct selection of FB-RL by both Hb for two subjects. Gray solid, gray dashed, black solid, and black dashed lines indicate average
signals during the task for front, back, left, and right directions, respectively. Gray zone indicates selected position.

accuracy was in the order of all features SVM < time

selection SVM < channel selection SVM < direct selec-

tion SVM. fNIRS is often used to examine mainly spatial

localization, such as mapping the amplitude of each channel

to the cerebral cortex. However, our results suggest that force

directional information was localized not only in the channel

but also in the time dimension because the classification

accuracy of direct selection SVM was the highest.

Fig. 5 shows that selected feature position of direct selec-

tion of FB-RL by both Hb for two subjects. Selected channels

that were not found tend to match in both subjects. Time was

selected near 4, 12, and 17 [s] for both subjects; 4 [s] is the

time it takes for fNIRS signal rises in general and represents

the peak position of the signal. 12 [s] is the time the task

ends. 17 [s] may represent the trend.

V. CONCLUSION

Applying feature selection by using the SLR, we suggested

that information about force direction in fNIRS was localized

in both time and channel dimensions. The peak time of the

signal, when the task ends, and a few seconds after the task

ends, were particularly well selected. On the other hand,

selected channels that were not found tend to match between

the subjects. The reason could be that the measurement data

sets contain displacement of channel position that cannot be

controlled for each subject and channel.

If features are selected by using SLR from OxyHb and

DeoxyHb, the classification accuracy became high with more

than 95 [%] for each classifier. However, this accuracy was

inappropriate to evaluate the performance of online classifi-

cation because training was included on the test data when

the feature position was selected by SLR. If SLR training

to select feature position was performed in only training

data to evaluate the performance of online classification,

the classification accuracy was almost unchanged with all

features SVM. If training and test data is generated from

the same distribution, the optimal feature position could be

estimated in the only training data. However, in fact, data

distribution was changed due to a shift of channel position

and change in the signal to noise ratio because data was

measured over the course of five days. Therefore, we need

to investigate the method to allow for or correct a change

for each day.
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