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Abstract— We present a comparative study of the perfor-
mance of different basis functions for the nonparametric
modeling of neural activity in response to natural stimuli. Based
on naturalistic video sequences, a generative model of neural
activity was created using a stochastic linear-nonlinear-spiking
cascade. The temporal dynamics of the spiking response is well
captured with cubic splines with equidistant knot spacings.
Whereas a sym4-wavelet decomposition performs competitively
or only slightly worse than the spline basis, Haar wavelets
(or histogram-based models) seem unsuitable for faithfully
describing the temporal dynamics of the sensory neurons. This
tendency was confirmed with an application to a real data set of
spike trains recorded from visual cortex of the awake monkey.

I. INTRODUCTION

A majority of neurons in the visual areas of the brain
respond to specific features in the visual input by firing
a temporal sequence of action potentials (or spikes). A
popular statistical description consists of a cascade of a linear
filtering stage, followed by a nonlinear transfer function to
obtain an instantaneous firing rate from which spikes are
stochastically generated [1]. While this model can explain
the neural responses to simple stimuli such as light dots
or moving bars, it captures only a small variance of the
response to natural stimulation [2]. Consequently, instead of
directly estimating a tentative linear receptive field and the
nonlinearity, researchers have directly estimated the firing
intensity over time using semi- or non-parametric methods
[3], [4].

Traditionally, the neural firing intensity is estimated from
data using binning approaches (a piece-wise constant model
of the firing intensity) that are known in the neuroscientific
literature as PSTH estimators (peri-stimulus time histograms)
[5]. More recently, nonparametric models using regularly
spaced cubic splines were employed to model stimulus
dependencies of the firing rate [6]. Modern signal processing
techniques utilize wavelet decompositions which have been
shown to be efficient representations for many naturally
occurring signals [7]. However, to our knowledge, despite
an early proposal [8], wavelet analysis has not found its
way into modeling neural intensity functions. Because time
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series of visual signals under natural stimulation are highly
non-stationary and consist of frequent transients [1], we
hypothesized that wavelets might allow efficient signal rep-
resentations.

It is important to find a good statistical model of the
temporal spiking activity because it disentangles two con-
founding factors in measured correlations of the ensemble
of simultaneously recorded neurons: stimulus-induced cor-
relations (neurons share similar receptive fields or respond
to correlated features in the input) and network-induced
correlations (arising from direct synaptic or more general
effective inter-neuron couplings). To study the graph of the
effective coupling structure between neurons, one therefore
has to carefully account for the modulation of neural activity
induced by the stimulus.

The statistics of the signal dictate which basis function
representation is most suitable. In the first part of our analysis
presented here, we derive a generative model of the expected
intensity modulations. To this end, we extract temporal
dynamics of a natural movie and apply the cascade neuron
model to obtain realistic time series and their statistics. On
these time series, we can then evaluate the relative fidelities
of spline- and wavelet-based approaches. As a second step,
we apply the different models to a data set of recorded
neurons in the visual cortex of the awake monkey that
is passively and repeatedly viewing excerpts from natural
movies. Using a cross-validation procedure, we can directly
evaluate the predictive power to explain the observed spiking
patterns.

II. METHODS

A. Toy data
1) Signal characterization and generative model: We

used a movie recorded by a CCD camera mounted on the
head of a freely moving cat as the basis for the natural
stimulus. The video was recorded by the group of Peter
Koenig (University of Osnabrueck, Germany1). Full details
can be found elsewhere [9]. Briefly, the video is of length
60 seconds (50 Hz) at a resampled resolution of 128 by 128
pixels. Pixel intensities are encoded in 8-bit gray scale (see
Figs. 2A and B for example image frames).

We filtered a subregion of the natural movie at a random
location with a two-dimensional Gabor function of size 32-
by-32 pixels and random orientation and phase to simulate
the filtering characteristics of simple cells of the visual cortex
(see Fig. 2C for an example).

1Source: http://crcns.org/data-sets/vc/pvc-3/movie. Last ac-
cess: 02/15/2012.

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

4611978-1-4577-1787-1/12/$26.00 ©2012 IEEE



0 5 10
−50

0

50

100

150

time [s]

si
g

n
a

l i
n

te
n

si
ty

 

 

natural movie

model

−50 0 50
−50

0

50

signal s(i)

in
cr

e
m

e
n

t 
d

s(
i+

1
)

−50 0 50
0

0.1

0.2

noise increment

p
ro

b
a

b
il

it
y

−20 0 20
−20

0

20

signal s(i)

si
g

n
a

l s
(i

+
1

)

A B

C D

Fig. 1. Characterization of temporal dynamics of natural visual stimuli. (A)
Sample trace of a linear Gabor filter applied to a video sequence with natural
statistics (black, arbitrarily shifted). The synthetic model of the time series
is an AR(1) process with Laplacian-distributed noise increments: s(i+1) =
s(i)(1+ γ) + ϵ(i+1) (red). (B) Scatter plot of finite differences of signal
values ds(i+1) = γs(i)+ϵ(i+1) versus s(i). The linear slope determines
γ = −0.56. (C) Histogram of noise increments (black). The distribution
is symmetric around the origin and well-fitted with a Laplacian with decay
constant µ = 3.08 (a.u.) (red). (D) Scatter plot of s(i+ 1) versus s(i) for
both the extracted time series (black) and the model (red). For clarity, only
200 sample pairs of each type are displayed. Model and real time series
share similar auto-correlation structure.

The statistical features of the resulting one-dimensional
time series s(i) suggest to model it as an AR(1) process
with non-Gaussian noise increments. Specifically, s(i+1) =
s(i) + ds(i + 1) with ds(i + 1) = γs(i) + ϵ(i) and ϵ(i) ∝
Laplace(µ) is a good approximation to the observed time
series (see Fig. 1 for details). γ was obtained by the slope
of the linear fit of ds(i + 1) against s(i) (see Fig. 1B)
and µ was obtained by a fit to the distribution of noise
increments ϵ(i) (Fig. 1C). Synthetically generated time series
are statistically similar to time series directly extracted from
the natural movie (Figs. 1A and D) so that we used the
synthetic time series for the remaining analysis. The time
series were further resampled by a factor of 20 (using a
polyphase filter implementation) to obtain a sampling rate of
1000 Hz in order to match conditions of typical electrophys-
iological recordings (see Fig. 2E for an example). 100 such
synthetically generated time series of length 2.048 seconds
(corresponding to 2048 data points) were used for fitting.

For modeling neurons in early visual cortex, we followed
the classical cascade neuron model (Linear - Nonlinear
- Spiking model) [10]. The linear part is given by the
previously described Gabor filtering, respective the synthetic
model. This filter output is transformed using a sigmoidal
nonlinearity to yield an instantaneous probability of firing an
action potential (or spike) within the sampling period ∆ =
1 ms: p(i) = 1

1+exp(−s(i)) , where s(i) is the (resampled)
linear signal at time i. Spike trains (represented by the
binary sequence Y (i)) can be generated from the instan-
taneous firing probabilities as a realization of a Bernoulli
process with given spiking probabilities p(i). We generated
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Fig. 2. Generative model of neural responses to natural stimuli. (A-B) Two
example frames from the natural stimulus movie. (C) Example receptive
field. (D) Scheme of the cascade neuron model. The output of a linear filter
stage is transformed into a nonnegative firing intensity from which spikes
(point process events) can be stochastically drawn. (E) Signal obtained by
convolving the receptive field with the stimulus and normalizing. (F) Firing
rate of the simulated neuron is obtained by a non-linear transform of the
linear signal. (G) Example spike trains generated as stochastic realizations
of the firing intensity.

N = 10 independent realizations (’trials’) for each time
series to mimick experimental conditions in which the same
stimulus is repeatedly displayed during electrophysiological
recordings.

2) Model specification and fitting: In practice, neither the
input s(i) that is driving the neural activity nor its nonlinear
transformation p(i) can be directly observed. Instead, we
have to infer an estimate ŝ(i) of the time course of s(i) using
the spike count observations Y (i). We can represent ŝ(i)
through a set of basis functions: ŝ(i) =

∑
j Wijβj where

Wij is the jth basis function evaluated at time i and βj

are the estimated coefficients. We obtain the coefficients as
the maximum-likelihood solution of the nonlinear logistic
regression problem: Y (i) ∼ Bernoulli(p(i)) with p(i) =

1

1+exp(−
∑

j
Wijβj)

.

We compare the reconstruction performances of three
different basis function representations: a) a multi-level
wavelet decomposition using ’sym4’ wavelets, b) a multi-
level wavelet decomposition using Haar wavelets and c)
cubic splines with equidistant knot placing. The number
of coefficients used for fitting can be varied by taking all
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wavelet functions (including the scaling functions) of level
k or higher (here, up to level 8). This yields representations
with the number of coefficients ranging from 16 to 1024.
The number of knot points of the spline representation were
matched to the same number of coefficients.

Performance is evaluated using the mean squared error
(MSE) between the original signal s(i) and its predicted
value ŝ(i).

B. Real data set

1) Data acquisition: Full experimental details are pub-
lished elsewhere [6]. All experimental procedures were ap-
proved by local authorities (Regierungspraesidium Hessen,
Darmstadt, Germany) and were in accord with the guide-
lines of the European Community for the care and use of
laboratory animals (European Union directive 86/609/EEC).
Briefly, electrophysiological recordings were performed in
the visual cortex of the awake monkey. Single-unit activity
was retrieved from the signals of several extracellularly-
placed electrodes and a subsequent spike-sorting procedure.
The monkey was fixating and passively viewing short ex-
cerpts from natural movies. Data was recorded in 20 sessions,
with an average of 24 reconstructed single-unit activities. We
selected the first 2.048 seconds of each trial and binned the
recorded spike train for each neuron in time bins of width
∆ = 1 ms. In each recording session, a specific movie
sequence was repeated between 50 and 100 times. For the
analysis, we pooled spike trains over all trials into a single
time series of spike counts.

2) Nonlinear spiking model and evaluation: We aim to
estimate the neural firing intensity as a function of time since
trial onset with a nonlinear parametric model. Specifically,
we assume that the observations Y (i) (spike counts per
time bin) are samples from a Poisson distribution with
mean µ(i) that is a function of model parameters, i. e. the
basis function coefficients: µ(i) = exp(

∑
j Wijβj) and

Y (i) ∼ Poisson(µ(i)). We used different covariate matrices
W for the three different basis functions (see Sect. II-A).
We restricted the number of possible parameters to be be-
tween 16 and 512. Parameter estimates were obtained using
standard maximum-likelihood estimation. We evaluate the
performance of the different models using a 10-fold cross-
validation approach: The average deviance (proportional
to the negative log-likelihood) on the test sets determines
relative performance. Because the absolute scaling of the
deviance is arbitrary, we offset it to the smallest value
found. When a fit of any model complexity or basis function
for a particular neuron was non-convergent (e. g. due to
quasi-separability), the corresponding iteration of the cross-
validation was excluded from the analysis. In total, 625 fits
(12.8%) were used.

III. RESULTS

A. Toy data

We estimated the hidden input to the neuron s(i) from
the observed spike trains using models with different basis
functions (sym4-wavelets, Haar wavelets and cubic splines)
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Fig. 3. Results on toy data. (A) An estimate of the signal was obtained
from the spiking observations using a nonparametric model with varying
number of coefficients. Mean squared errors are shown for three different
basis representations: sym4-wavelets (black dots), Haar wavelets (red dots)
and cubic splines (blue dots). Error bars denote s.e.m. (N = 100 signals)
and lie within the marker shapes. Note the logarithmic scales. (B) The
difference of the MSE between sym4-wavelets and splines (black dots) and
Haar wavelets and splines (red dots) are shown for varying number of model
parameters. Values larger 0 indicate a superior performance of the spline
basis representation.

and complexity (number of estimated basis functions). First,
we present results for the toy data (Fig. 3). Since for this case
the ground truth is available, the mean squared error (MSE)
can be used to determine the error between the estimated and
original signal. We find that performance generally improves
for all three sets of basis functions with increasing number of
model parameters and starts to decrease for complex models
(large number of coefficients) due to the increased variance
in parameter estimates (Fig. 3A).

Given the same number of model parameters, the cubic
spline representations performs best. It also achieves the
overall lowest MSE. The sym4 basis consistently shows
an almost equivalent performance; its absolute difference
to the spline basis performance is always lower than 0.02
(Fig. 3B). The Haar wavelet (or PSTH) performs significantly
worse in the relevant range of model complexities (Fig. 3B).
Performance gets almost independent of the actual shape of
the basis functions for very low and very high number of
parameters.

B. Real data

We show results for fitting models of different complexi-
ties and choice of basis functions on a real data set in Fig. 4.
The cross-validated deviance first decreases with increasing
number of coefficients and then increases again, for all types
of basis functions. As for the simulated data, cubic splines
show an overall superior performance. The sym4-wavelet
basis performs slightly worse for low number of model
parameters (16-32), but comparable to the splines for larger
values. The Haar wavelet basis is significantly worse than
splines for any choice of parameters. The average difference
in deviances can reach values up to 8 which corresponds to
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Fig. 4. Results on real data. (A) Cross-validated deviance as a measure
of model performance. An estimate of underlying neural firing intensity
was obtained from the spiking observations using a nonparametric Poisson
regression model with varying number of coefficients. Predictive perfor-
mance is measured as the cross-validated deviance, obtained from 10-fold
cross-validation procedure. A constant term was subtracted to align the
minimal value with 0. A lower value indicates better predictive performance.
(B) Same curves as in (A), but relative to the performance of the cubic
spline basis. Positive values indicate a superior performance of the splines
compared to the wavelet basis functions.

a mean likelihood ratio of around exp( 82 ) ≈ 55 in favor of
the cubic spline model.

IV. DISCUSSION

Our first contribution was to establish a generative model
of the spiking activity of (simple) cells in the visual cortex
in response to natural visual stimulation. Because the linear
part of the generative model is well-described by a mean-
reverting auto-regressive process with non-Gaussian jumps,
we expect our analysis to be general applicable to this
broader class of stochastic processes.

Based on simulations and analysis of real data from
the awake monkey, we could show that cubic splines and
wavelet decompositions are a suitable basis for representing
neural activity in time. We showed that the Haar wavelet
decomposition cannot account for the temporal dynamics of
neural responses. In the context of the analysis of neuro-
physiological signals, the fixed Haar basis is more commonly
known as a peri-stimulus time histogram (PSTH) estimate.
We therefore discourage the use of simple histogram-based
estimators because they are likely to lead to spurious correla-
tions when used in the context of neural population models.
It remains an open question how the detailed modeling of
the stimulus using wavelets affects the estimates of their
functional coupling.

Beside the choice of the basis representation, the proper
model complexity, i. e. the number of model parameters to
be estimated, plays an important role. For the application
to the real data set, the observed optimal cross-validated
performance is in the region of 25 parameters per second

of recorded data. This value is close to the one used in a
previous study [6] (74 parameters for a data of length 2.8 s).
The results presented here therefore provide a confirmation
of the their choice of basis function type and number of
coefficients that was solely based on visual inspection and
computational considerations.

For our analysis, we restricted ourselves to static choices
of the basis functions. Specifically, for the cubic splines, we
used equidistant knot spacings that are fixed independent
of the actual data. We expect that adaptive knot placement
strategies (such as BARS [11]) will yield even better results
with the addition of increased computational complexity.
Finally, for any wavelet decomposition, shrinkage methods
have been shown to be very powerful in representing tem-
poral signals with a limited number of parameters [12].
In the future, we will investigate how we can reconcile
these modern signal processing techniques with classical
neurophysiological models based on point processes that also
include history- and cross-coupling effects.
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