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Abstract— In a number of application areas such as neural
coding there is interest in computing, from real data, the
information flows between stochastic processes one of which
is a point process. Of particular interest is the calculation of
the trajectory (as opposed to marginal) mutual information
between an observed point process which is influenced by an
underlying but unobserved analog stochastic process i.e. a state.
Using particle filtering we develop a model based trajectory
mutual information calculation for apparently the first time.

I. INTRODUCTION

Recently there has been substantial practical investigation

of mutual information and the related concept of entropy in

neuroscience to measure information flows between various

signals of interest for systems observed through point pro-

cesses [1], [2]. Information transmission in the brain is partly

by spike trains (axon potentials) [1], [2] and it is hoped that

by studying these information flows some understanding of

how the brain codes information can be achieved [3]. Also

such studies could help in the design of neural prosthetic

devices [4].

The traditional measure of information flows between

stochastic processes computes instantaneous mutual infor-

mation [5]. We refer to the traditional measure as marginal

mutual information. The problem of interest in many ap-

plications including optical detection [6] is to measure the

information flows between trajectories of the processes. We

refer to this as trajectory mutual information to emphasize

the fact that we are measuring mutual information between

trajectories of random processes and not just instantaneous

(i.e. marginal) mutual information.

In the recent work [7], new formulae for mutual infor-

mation have been developed based on the state dependent

stochastic intensity function of the point process. In related

literature based on the stochastic intensity, the formula for

mutual information for the particular case of an observed

point process and an unobserved analog state has been

developed in the important work of [8]. The only previous

attempt at numerically calculating the mutual information

between a point process and a state by means of a joint

stochastic model is due to [3]. However that calculation is

based on a Gaussian approximation of the predicted and

posterior probability densities of the current state conditional

on point process observations.
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The calculation of trajectory mutual information between

an observed point process and an unobserved analog process

requires estimates of the (unconditional) probability density

of the unobserved process as it evolves. In this paper, using

iterated expectation we rewrite the formula in terms of

probability density of the analog process conditional on point

process observations. Using particle filtering [9], [10], [11]

and Monte Carlo simulations we present for the first time a

numerical calculation of the trajectory mutual information.

In the remainder of the paper we define the stochastic

conditional intensity function in Section II. We give the

formula for trajectory mutual information and computation

details in Section III. This is followed by a review of particle

filtering for point process observations in Section IV. In

Section V we discuss the simulation setup and results. A

discussion of the findings is offered in Section VI. The paper

concludes with some final remarks in Section VII.

Notation. In the sequel subscript k denotes discrete time and

subscript (t) denotes continuous time.

II. POINT PROCESSES

We define the point process notation and review some

definitions from stochastic point process theory.

The point process is characterized by the counting process

N(t) = # events up to time t. Sampling the process at

infinitesimal intervals δ gives the discrete-time equivalent

Nk = N(kδ). δN(t) = # events in the interval [t, t +
δ) or equivalently in discrete-time δNk = δN(kδ). The

counting path up to time k is given by the sequence of

incremental counts, Nk
0 = (δN0 = δn0, . . . , δNk = δnk)

and the associated sequence of random variables by N0,k =
(δN0, . . . , δNk). By a(δ) = o(δ) we mean a(δ)/δ → 0 as

δ → 0. For the observation interval [0, T ], T = nδ.

For the counting process Nk the stochastic conditional

intensity λk at time k is given by,

P (δNk = 1|Nk−1
0 ) = λkδ + o(δ).

For a formal definition of the stochastic intensity refer to

[12], [13].

Under the No Simultaneity [7] condition (more commonly

known by the less informative term of orderliness which just

means no more than one event can occur in a small interval

of time), Nk is conditionally a Bernoulli process, i.e.,

P (δNk = 0|Nk−1
0 ) = 1− λkδ + o(δ).

The point processes of interest here are those which evolve

under the influence of another stochastic process. Let x(t)

denote such a process with sampled version xk = x(kδ).

The sample path of the process up to time k is denoted by

Xk
1 = (X1 = x1, . . . , Xk = xk) and X1,k = (X1, . . . , Xk).
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Suppose Xk is the state of an analog stochastic process at

time k and the stochastic intensity depends on the under-

lying unobserved state. Then, the state dependent stochastic

intensity is given by

P (δNk = 1|Xk = xk) = λk,xk
δ + o(δ),

and the No Simultaneity condition gives,

P (δNk = 0|Xk = xk) = 1− λk,xk
δ + o(δ).

Furthermore,

P (δNk = 1) =

∫

P (δNk = 1|xk)p(xk)d(xk)

= βkδ + o(δ),

where βk = E(λk,xk
) defines the marginal rate function.

Moreover, P (δNk = 0) = 1− βkδ + o(δ).

III. MUTUAL INFORMATION

We review some information-theoretic calculations per-

taining to the concepts of marginal and trajectory mutual

information.

In the discrete case, the entropy of a vector-valued random

variable X with probability distribution p(x) = P (X = x)
is defined as [14], H(X) = −Σxp(x)lnp(x). If y is a

realization of a vector-valued random variable Y , then the

stochastic conditional entropy is defined as [7],

H(X |Y = y) = −Σxp(x|y)lnp(x|y).
Taking expectation gives the average conditional entropy

[14], H(X |Y ) = ΣyP (Y = y)H(X |Y = y). For the

bivariate random variable (X,Y ), mutual information is

defined as [14],

I(X ;Y ) = H(X) +H(Y )−H(X,Y ).

A. Marginal Mutual Information

Turning to the process case, traditional data analysis using

mutual information measure association for (X(t+u), Y(t))
at lag u. This involves brute force calculation based on the

definition [1], [2], [5]. Following the approach in [7], we

express the marginal mutual information at time t in terms

of the underlying stochastic conditional intensity functions.

Let (Xk, δNk) denote the bivariate random variable at

time k comprising of the underlying unobserved state and

the incremental count. We follow the notation in [7] and

subscript H and I by δ. The marginal mutual information

Iδ,k i.e., mutual information at time k is given by,

Iδ,k = Hδ(Xk) +Hδ(δNk)−Hδ(Xk, δNk).

The chain rule for entropy gives

Iδ,k = Hδ(δNk)−Hδ(δNk|Xk).

Consider first

Hδ(δNk) = −P (δNk = 1)lnP (δNk = 1)

− P (δNk = 0)lnP (δNk = 0)

= −βkδlnβk + βkδ − βkδlnδ + o(δ).

Next consider

Hδ(δNk|Xk = xk) = −P (δNk = 1|xk)lnP (δNk = 1|xk)

− P (δNk = 0|xk)lnP (δNk = 0|xk)

= λk,xk
δlnλk,xk

+ λk,xk
δ − λk,xk

δlnδ + o(δ).

Taking expectations,

Hδ(δNk|Xk) = −δE(λk,xk
lnλk,xk

) + βkδ − βkδlnδ + o(δ).

Taking the difference of the entropies, the mutual information

at time t between an observed incremental count and an

unobserved analog state is given by

I(X(t), δN(t)) = δE(λ(t,x)lnλ(t,x))− β(t)δlnβ(t) + o(δ).

B. Trajectory Mutual Information

The formula for calculating the mutual information be-

tween the trajectories of an unobserved analog state and an

observed point process is [8],[7, Section IV],

I(X(0,T ), N(0,T ))

=

∫ T

0

E(λ(t,x) lnλ(t,x))dt−
∫ T

0

E(λ̂(t) ln λ̂(t))dt, (1)

Note that the expectation in the first term is with respect to

the probability measure of the unobserved process which is

not known. We use iterated expectation to rewrite the formula

as I(X(0,T ), N(0,T )) = E(JT ),

JT =

∫ T

0

E(λ(t,x) lnλ(t,x)|N(0,t))dt−
∫ T

0

λ̂(t) ln λ̂(t)dt,

with λ̂(t) = E(λ(t,x)|N(0,t)).

Then the expectation in the first term of JT and λ̂(t) can be

evaluated using estimates of the filtering density conditional

on point process observations. We use the auxiliary particle

filter [10] to obtain estimates of the filtering density at each

time step. E(JT ) is approximated by a Monte Carlo average.

IV. PARTICLE FILTERING

The computation of trajectory mutual information in (1)

requires estimates of the conditional density p(xk|Nk
0 ). The

conditioning on the point process history implies that even

under linear dynamical models for the state and intensity pro-

cesses a closed form solution does not exist. We employ the

particle filtering approach to solve the estimation problem. In

the following we briefly explain the auxiliary particle filter

[10] in the context of point process observations, referring to

the substantial theoretical and practical development of the

technique for the case of discrete time observations [11].

A. Auxiliary Particle Filter

In [10] the auxiliary particle filter was proposed as an ex-

tension of the particle filter [9] that was shown to improve the

statistical efficiency of the sampling method by simulating

particles with high predictive likelihoods. Sampling from the

joint density of the state xk+1 and index i of the particles,

the index which is an auxiliary variable can then be dropped

to produce a discrete support of the filtering density. The

unnormalized weights are defined based on the information

of the incremental count δNk as follows

w̃
(j)
k =

p(δNk|x(j)
k )p(x

(j)
k |x(i)(j)

k−1 )

g(x
(j)
k , i(j)|Nk

0 )
, j = 1, . . . ,M

where

g(xk, i|Nk
0 ) ∝ p(δNk|ξ(i)k )p(xk|x(i)

k−1)w
(i)
k

with ξ
(i)
k as some charaterization of xk|x(i)

k−1. w
(i)
k are the

normalized weights. Marginalizing the state xk ,
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g(i|Nk
0 ) ∝

∫

p(δNk|ξ(i)k )p(xk|x(i)
k−1)w

(i)
k dxk

= p(δNk|ξ(i)k )w
(i)
k .

This suggests an algorithm that samples from g(xk, i|Nk
0 )

by simulating index i ∼ g(i|Nk
0 ) and then sampling

from p(xk|x(i)
k−1). The weights are redefined as w̃

(j)
k =

p(δNk|x
(j)
k

)

p(δNk|ξ
(j)
k

)
, j = 1, . . . ,M .

V. SIMULATION

A simulation study of the spike activity of the hippocampal

place cells analyzed in [3] is presented. The spike activ-

ity is modeled as a doubly stochastic process [6] where

the stochastic intensity depends on the unobserved spatial

position of the animal. We illustrate the computation of

information flows between the trajectory of the animal and

the spiking activity of a place cell.

1) Simulation Development: A typical free foraging ex-

periment is considered where the rat moves in a [0, 1] ×
[0, 1]m2 region. An electrode implanted in the hippocampus

of the rat records neural activity at intervals of 0.8ms.

The model of the stochastic intensity to generate the spike

train and the dynamics of the animal to generate the spatial

positions are discussed below.

The state dependent stochastic intensity is modeled as a

two-dimensional Gaussian surface,

λ(t,x) = exp(α− 1

2
(xt − η)TΣ−1(xt − η))

with known parameter values α = 3.5, η = (0.5, 0.5)T and

Σ = σ2
λI where σλ = 11.5 cm and I is the identity matrix.

This generates responses centered at (0.5, 0.5); at a distance

of σλ = 11.5 cm the firing rate is about 20Hz while at

2σλ = 23 cm it is about 4.5Hz.

The temporal evolution of the state is given by the

continuous time Ornstein-Uhlenbeck process,

dx(t) = θ(µ− x(t))dt+ σxdW(t)

where the time constant 1/θ = 3.3 s and the standard

deviation σx = 10 cm, W(t) is a Brownian motion of

variance t. Also µ = (0.5, 0.5)T .

The x and y components then each have standard errors

≈
√

σ2
x

2θ = 13 cm. The magnitude of fluctuations in x,y

relative to the center η of the intensity are 38 cm and 33.6 cm
respectively.

The solution of the stochastic differential equation is

simulated for 100 s using the implicit Euler approximation

(which preserves stability without additional constraints on

the parameters),

xk+1 =
2θδ

2 + θδ
µ+

2− θδ

2 + θδ
xk +

2

2 + θδ
σ
√
δwk

where δ = 25ms is the discretization step, and wk is the

normal random variable with mean (0, 0)T and covariance

I2.

The point process is simulated for 100 s under the No

Simultaneity condition using the thinning procedure [15],

[16].

Estimates of the conditional density p(xk|Nk
0 ) are ob-

tained via the auxiliary particle filter using M = 250 par-

ticles which was found to perform better than the sampling

importance resampling (SIR) filter [11].

The expectation in the second term in (1) is obtained by

a Monte Carlo average from 50 runs involving simulation of

the point process followed by particle filtering. The second

integral in the formula is then evaluated numerically.

The expectation in the first term in (1) is evaluated by

the iterated expectation using estimates of the conditional

density p(xk|Nk
0 ) and taking a Monte Carlo average from

50 runs. Evaluating the integral and taking the difference

with the second term gives the measure of information flow

between the trajectories.

2) Simulation Results: The true trajectory of the rat from

an initial position (0.48, 0.49)m is shown in Fig. 1(a) where

it is overlaid on a contour plot of the intensity. The particle

filter estimates of the position and the error in the estimates

along each axis are shown in Fig. 1(b),(c). The results

indicate that the particle filter performs reasonably well

considering the estimates are formed from observations of

the neuronal firings only shown in Fig. 2.

As shown in Fig. 3(a), the trajectory mutual information

rate drops initially before settling. The information rate is

informative since it captures the variations in the mutual

information flow between the trajectories of the rat and the

neuronal activity of the hippocampal place cell. Also, vari-

ations in the trajectory mutual information rate are captured

by the moving window mutual information rate as shown in

Fig. 3(b) for a window size of h = 25ms.

VI. DISCUSSION

The continuous time Ornstein-Uhlenbeck process is a

suitable means to model a scenario where the rat freely

forages in an open environment but returns to a location

where some food or water may be present. Furthermore, by

encoding the spatial information in the spike train through

the intensity function, neuronal firings in bursts can be

produced as the rat approaches the location (0.5, 0.5)m (as

shown in Fig. 2) using the 2-dimensional Gaussian surface to

model the intensity. The particle filtering provides a reliable

approach to decode the spatial information of the rat as it

forages given observations of the neuronal firing times only.

The mutual information between the trajectories of the

rat’s spatial position and neuronal firings in the place cell

is expected to grow with time as the animal forages in

the environment. This is also confirmed by Fig. 3(a) which

suggests that information gain is approximately linear with

time. The variations in the information gain due to the path

taken by the rat are apparent in Fig. 3(b) where the peaks

of the moving window mutual information rate coincide

with those of the neuronal firings as the rat approaches

(0.5, 0.5)m.

VII. CONCLUSIONS

In this paper we have discussed for apparently the first

time a proper model based computation of true trajectory
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Fig. 1. True Trajectory and Particle Filter Estimates.

mutual information between a point process and an analog

process when the intensity function of the point process de-

pends on the unobserved analog process. Our implementation

is based on the formula for trajectory mutual information

due to [8] but developed further in [7] using the conditional

Bernoulli heuristic and the stochastic conditional intensity

function. Estimates of the conditional density of the state

are obtained using particle filtering. The method has been

illustrated with a simulation study. Future work will develop

such a calculation for multi-unit neuronal recordings from

the hippocampus place cells from real studies.
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