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Abstract² Real neurobiological systems in the mammalian 

brain have a complicated and detailed structure, being 

composed of 1) large numbers of neurons with intricate, 

branching morphologies ± complex morphology brings with it 

complex passive membrane properties; 2) active membrane 

properties ± nonlinear sodium, potassium, calcium, etc. 

conductances; 3) non-uniform distributions throughout the 

dendritic and somal membrane surface of these non-linear 

conductances; 4) non-uniform and topographic connectivity 

between pre- and post-synaptic neurons; and 5) activity-

dependent changes in synaptic function.  One of the essential, 

and as yet unanswered questions in neuroscience is the role of 

these fundamental structural and functional features in 

GHWHUPLQLQJ� ³QHXUDO� SURFHVVLQJ´� SURSHUWLHV� RI� D� JLYHQ� EUDLQ�

V\VWHP�� �7R�KHOS�DQVZHU� WKDW�TXHVWLRQ��ZH¶UH�FUHDWLQJ�D� ODUJH-

scale, biologically realistic model of the intrinsic pathway of the 

hippocampus, which consists of the projection from layer II 

entorhinal cortex (EC) to dentate gyrus (DG), EC to CA3, DG 

to CA3, and CA3 to CA1.  We describe the computational 

hardware and software tools the model runs on, and 

demonstrate its viability as a modeling platform with an EC-to-

DG model. 

I. INTRODUCTION 

More than a century of observation and research has 
made it clear that real neurobiological systems in the 
mammalian brain have a complicated and detailed structure, 
being composed of: 

1. Large numbers of neurons with intricate, branching 
morphologies.  Complex morphology brings with it 
complex passive membrane properties, 

2. Active membrane properties ± nonlinear sodium, 
potassium, calcium, etc. conductances, 

3. Non-uniform distributions throughout the dendritic 
and somal membrane surface of these non-linear 
conductances, 

4. Non-uniform and topographic connectivity between 
pre- and post-synaptic neurons, and 

5. Activity-dependent changes in synaptic function.   

Despite the large volume of experimental work that has 
been done on various systems in the mammalian brain, one of 
the essential, and as yet unanswered questions in 
neuroscience is the role of these fundamental structural and 
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IXQFWLRQDO� IHDWXUHV� LQ� GHWHUPLQLQJ� ³QHXUDO� SURFHVVLQJ´�
properties of a given brain system.  To help answer this 
TXHVWLRQ�� ZH¶UH� LQ� WKH� SURFHVV� RI� FUHDWLQJ� D� ODUJH-scale, 
biologically realistic model of the intrinsic pathway of 
hippocampus, which consists of the projection from layer II 
EC to DG, EC to CA3, DG to CA3, and CA3 to CA1.  In the 
FRQWH[W� RI� WKH� PRGHO�� ³ELRORJLFDOO\� UHDOLVWLF´� PHDQV� WKDW�
ZH¶UH� LQFOXGLQJ� DFFXUDWH� DQG� GHWDLOHG�PRUSKRORJLHV� IRU� WKH�
major classes of neurons in the hippocampus, nonlinear, non-
uniformly distributed membrane channels on each of the 
cells, topographically constrained connectivity, and activity-
dependent synaptic plasticity. 

Our goal with this model is to study the contribution of 
each of these factors to global hippocampal function.  For 
example, how does the topology of the system, which places 
constraints on the connectivity between the various regions of 
the hippocampus, affect the signal processing capabilities of 
the system as a whole?  How do the morphologies and 
biophysics of the various cell types contribute to overall 
system function?  What role do the various types of system 
non-stationarities (i.e., synaptic plasticity) play in defining 
WKH�V\VWHP¶V�FDSDELOLWLHV"� Why are so many cells required to 
achieve the system-level functionality of the hippocampus?  
A large-scale, biologically realistic model of the hippocampal 
system can give us insight into all of these questions. 

This work represents a first-of-kind model of the 
hippocampus, and as such, incorporates several advances that 
either have not been included in other large-scale models, or 
that have not been included in simultaneously in one model: 

1. Uniquely generated cells, both morphologically and 
biophysically.  When it comes to defining individual 
cells in a systems-level model, common practices in 
the modeling community include creating simple 
artificial cells (such as the integrate-and-fire model), 
creating Hodgkin-Huxley (HH) type cells with 
reduced morphologies, and creating HH-type 
compartmental cells with detailed morphologies.  In 
the majority of models, however, all cells of a certain 
type (CA1 pyramidal, for instance) are identical to 
every other cell of that same type; all cells are based 
off of a template.  In our model, every primary 
hippocampal cell will have a uniquely generated 
morphology and set of biophysical parameters to 
reflect the fact that no cell in the brain is identical to 
any other cell. 

2. Differing morphologies by cell location�� � ,W¶V� QRt 
enough that every primary cell in the model be unique, 
as there are macro-level morphological changes 
within a given population of neurons, usually as a 
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function of physical position within the given region.  
We take these location-based differences into account 
when generating cells. 

3. Multiple types of synapse-level plasticity, including 
long-term potentiation/depression (LTP/LTD) and 
short-term plasticity, with augmentation and/or 
homeostasis as additional types of plasticity we may 
incorporate in the future. 

4. Between-region topology/connectivity.  Several 
detailed models of portions of the hippocampus exist, 
with dentate gyrus and CA1 being the most frequently 
selected regions for modeling.  In most cases, those 
models incorporate topological constraints for the 
connectivity between the various cell types within that 
given region.  Those constraints are often informed by 
the axonal spread of the input cells and/or the 
dendritic spread of the output cells.  Because we are 
modeling the full intrinsic circuit of the hippocampus, 
we are able to additionally impose between-region 
topological constraints on connectivity. 

II. METHODS 

A. Hardware/Software 

We run all simulations on our high-performance compute 
cluster consisting of 394 dual quad-core Intel-based nodes 
and 74 dual hexa-core Intel-based nodes, for a total of 4,040 
processor cores.  The system has 8.1 TeraB of distributed 
RAM, 73.1 TeraB of distributed disk space, and a maximum 
theoretical performance of 38.82 teraflops (Figure 1).  All 
nodes are connected to a high-speed, low-latency 10G 
Myrinet networking backbone.  These nodes are housed, 
maintained and monitored in facilities operated by the 
University of Southern California Center for High-
Performance Computing and Communications.  We utilize 
the MPI-enabled version of the NEURON simulation engine 
[1] to run all simulations, and use Python for model 
specification and data visualization/analysis [2]. 

B. Model components ± Morphology 

In order to generate unique morphologies for the primary 
cell types in the hippocampus, we use L-Neuron [3], a 
software tool based off of an algorithm first described by 
Dean Hillman [4], and rooted in Lindenmayer-systems.  The 
Lindenmayer formalism is quite useful for describing 
anything with a branching structure, including trees, fractals, 
and dendrites.  L-Neuron allows us to describe the 
fundamental morphological characteristics of a given cell 
type with a set of statistical distributions, and then create 
arbitrary numbers of unique dendritic trees by sampling, 
independently, from those distributions.  Fundamental 
parameters for dendritic trees include soma diameter, initial 
stem diameter, branch path length (for both terminal and non-
terminal branches), taper ratio, and bifurcation amplitude, 
among others.  To generate unique dendritic trees for our 
granule cell models, we used the statistical distributions for 
the morphological parameters that Hillman measured [10] 
(see Table 1).  We then import those morphologies into the 
NEURON environment as compartmental models, where we 
can then add the proper biophysics for the cells and the 
proper connectivity for the network.  Figure 2 shows a 

VDPSOH� RI� WKH� JUDQXOH� FHOO� PRUSKRORJLHV� ZH¶YH� JHQHUDWHG�
using this methodology. 

C. Biophysics 

NEURON allows us to re-create the non-linear dynamics 
of voltage- and ligand-gated membrane channels, and then to 
insert those channels in varying densities into the membrane 
of our cell models.  In this way, we are able to accurately 
simulate the non-uniformly distributed, non-linear active 
cellular mechanisms of all of the cells we will include in the 
large-scale model.  For the population of granule cells, we 
used the same channel types, densities and distributions as 
Santhakumar et. al. [11], similarly partitioning each cell into 
a somatic, granule cell layer, inner third, middle third, and 
outer third area.  Table 2 shows the values for the passive 
membrane parameters and the maximum conductances for 
the active channels in the somata of the granule cells.  We 
added variability to the biophysical mechanisms by allowing 
them to randomly vary by up to +-5% from their default 
value. 

D. Connectivity 

Anatomical data is very important in the determination 
and implementation of the proper connectivity scheme for 
each of the regions in the intrinsic pathway of the 
hippocampus.  Knowing the numbers and densities of cells in 
a given region, such as the dentate gyrus, allows us to 
properly place our cell models [6].  Knowing the axonal 
spread of the cells in the population of input cells, together 

 
 
Figure 1: 4,040-CPU Beowulf cluster used to run simulations.  

NEURON running over MPI was used to run the simulations, with 

Python being used to specify the model and perform data 

visualization/analysis. 
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with the dendritic spread of the cells in the output population 
allows us to calculate convergence and divergence values.  
And retrograde tracing experiments can help us identify 
which sub-populations on the input side project to which sub-
populations on the output side [7].  Please refer to Yu et al. in 
these proceedings [5] for a much more detailed description 
about how we implemented topographically constrained 
connectivity for the projection from entorhinal cortex (EC) to 
the dentate gyrus (DG). 

E. Activity-dependent Plasticity 

In order to capture the activity-dependent changes in 
synaptic function, we have started by implementing plasticity 
rules on two different time-scales.  Long-term potentiation 
(LTP) and depression (LTD) are implemented based on a 
spike-timing-dependent plasticity (STDP) rule.  Our short-
term plasticity implementation modifies a previously defined 
population-level deterministic model [9] to become a 
probabilistic release model that works at a single-synapse 
level.  Both types of plasticity have been implemented and 
validated using the NEURON simulation engine.  Please 
refer to Robinson et al. in these proceedings [8] for more 
detail about the implementation of both STP and STDP. 

III. RESULTS 

To demonstrate the viability of our cluster and 
accompanying software toolset as a modeling platform, we 
show preliminary simulation results from a 1/10th-scale EC-
to-DG model that features unique granule cell morphologies, 
non-uniformly distributed membrane channels, inhibitory 
feedback from basket cells, topologically constrained 
connectivity, and variable spike timing (Figure 3).  To 

simulate 1 second of biological time required approximately 
6,500 CPU hours (1 CPU  hour = 1 hour on a single CPU 
core) for the 100,000 granule cells, 11,200 EC cells, and 
1,000 basket cells that composed the model ± that leaves us 
enough unused computational capacity to grow the model to 
the size of the full rat hippocampus. 

IV. DISCUSSION AND FUTURE WORK 

Initial simulations with the model indicate that many, if not 

all of the model features we implemented are important.  As 

Variable 

Disto. 

type Mean 

Std. 

Dev. Min. Max. 

Soma Diameter Gaussian 9 2 1 15 

Number of Stems Uniform     2 4 

Stem initial diameter Gaussian 1.51 0.79 0 5 

Threshold Diameter 

for branching Gaussian 0.49 0.28 0 5 

IBF branch 

pathlength Gaussian 10.7 8.4 0 50 

Terminal branch 

pathlength Gaussian 10.7 8.4 0 50 

Daughter ratio Uniform     1 2 

Taper ratio Gaussian 0.1 0.08 0.01 0.5 

Rall power Constant     1.5 1.5 

Bifurcation amplitude Gaussian 42 13 0 180 

Bifurcation torque Uniform     -180 180 

Contraction Uniform     0.75 1 

Tree azimuth Uniform     -180 180 

Tree elevation Gaussian 10 2 0 180 

    42 2 0 180 

    75 2 0 180 

 
Table 1: Statistical distributions for the fundamental parameters 

governing the morphologies of the population of dentate granule cells. 

Figure 2: Sample of 8 granule cell morphologies generated using L-

Neuron. 

Mechanism (Soma)  Value  

Cm��>�)�FP
2]  1 

Ra��>
FP@� 210 

Leak Conductance [S/cm2]  0.00004 

Sodium [S/cm2]  0.12 

Delayed Rectifier K (slow) [S/cm2]  0.006 

Delayed Rectifier K (fast) [S/cm2]  0.016 

A-Type K [S/cm2]  0.012 

L-Type Calcium [S/cm2]  0.005 

N-Type Calcium [S/cm2]  0.002 

T-Type Calcium [S/cm2]  3.7E-05 

Ca-dependent K (SK) [S/cm2]  0.001 

Ca & Voltage-dependent K (SK) [S/cm2]  0.0006 

 
Table 2: Passive parameters and maximum conductances for the 

channels in the dentate granule cell somata. 
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a raster plot of the spike data shows (Figure 3), we see very 

interesting and non-uniform patterns of granule and basket 

cell activity emerge, even when the input from EC is 

uniform (the inter-spike interval follows a Poisson 

distribution).  This shows that the model system is 

performing non-linear spatiotemporal signal processing to 

the input, even though the input is not biologically realistic.  

We still need to develop metrics to measure the amount of 

clustering occurring in the data, and we want to look at the 

response of the network to biologically-inspired inputs, and 

we plan to add additional hippocampal regions (CA3, CA1) 

to the network.  We refer you to Gene et al. in these 

proceedings for more detailed results outlining the 

contributions of the topographically constrained connectivity 

to the signal processing capabilities of the system [5]. 

In summary, though the results of the model simulation 

are still fairly preOLPLQDU\�� ZH¶YH� VHHQ� WKDW� WKH� V\VWHP�

performs interesting and non-linear signal processing, even 

in the presence of a uniform input.  With such a detailed 

model, we hope to be able to quantify the contribution of 

each of these features to that non-linear transformation. 
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Figure 3: Simulation results from model with 100,000 unique dentate granule cells, 6,600 medial entorhinal cortical (MEA) cells, 4,600 lateral 

entorhinal cortical (LEA) cells, and 1,000 basket cells.  Topology/connectivity was biologically based, with sub-regions of the MEA & LEA 

projecting to sub-regions of the dentate gyrus.  Spike timing was variable.  The spatio-temporal clustering of spikes in the 2nd half of the simulation 

is noteworthy, considering the uniform nature of the input. 
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