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Abstract—One important step towards the cognitive neural
prosthesis design is to achieve real-time prediction of neuronal
firing pattern. An FPGA-based hardware computational platform
is designed to guarantee this hard real-time signal processing
requirement. The proposed platform can work in dual modes:
generalized Laguerre-Volterra model parameters estimation and
output prediction, and can switch between these two important
system functions. Compared with the traditional software-based
platform implemented in C, the hardware platform achieves bet-
ter efficiency in doing the biocomputations by up to thousandfold
speedup in this process.

I. INTRODUCTION

Neural prostheses are artificial devices that can be used

to substitute brain modalities which might be damaged as a

result of injury or disease. The research in neuroprosthetics

is catching the attention of scientists from various disciplines.

These prosthetic devices, once successfully developed, would

provide more fundamental remedies for certain diseases that

are considered incurable by traditional medicine [1].

We are now in the process of developing a hippocampal

cognitive neural prosthesis. This biomimetic prosthetic device

is expected to perform bidirectional interaction with the hip-

pocampus. The prosthesis functions to transform the spatial

temporal pattern of input spike trains recorded in CA3 region

to the spatial temporal pattern of output spike trains recorded

in CA1 region.

The mathematical underpinnings of this cognitive neural

prosthesis is the generalized Laguerre-Volterra model (GLVM)

which was established earlier in our group by Song et al.

[2]. The GLVM is a rigorous mathematical model which

describes the highly complicated neuronal process from a sys-

tem input/output relationship standpoint. For a long time, the

generalized Laguerre-Volterra algorithm is only implemented

using digital software running on commercial desktops and

workstations, which cannot guarantee hard real-time signal

processing that is required by future prosthetic applications.

This paper presents a hardware-based means of implementa-

tion of the GLVM employing modern field-programmable gate

array (FPGA) devices, which we deem as an important step

towards the cognitive neuroprosthetic system design.

There are some previous investigations regarding the hard-

ware implementation of the GLVM. The initial work was

carried out by Berger et al. in 2005 [3]. Later, Hsiao et al.
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Fig. 1. The dual working mode of FPGA: model parameters estimation and
model output prediction.

designed a in vitro hippocampal CA3 silicon prosthesis and

completed the fabrication using the TSMC 0.18um process

[4]. Recently, Li et al. adopted the Xilinx Virtex-6 FPGA

platform and conducted the GLVM parameters estimation with

high efficiency [5]. Compared with previous works, the work

presented in this paper has two distinct features. First, instead

of implementing the single-input, single-output (SISO) model

as done in [3] and [4], we are targeting the more complicated

multi-input, multi-output (MIMO) model. The MIMO model

is more physiologically plausible due to the fact that memory-

related information in the brain is coded in a distributed

manner among populations of neurons. Second, distinct from

the work presented in [5], the upgraded platform can be

used for conducting both GLVM parameters estimation and

neuronal firing pattern prediction as shown in Fig. 1. It can

switch between these two important system functions.

The major contributions of our work consist of two parts.

• We have successfully designed of an FPGA-based com-

putational platform for conducting hippocampal neural

firing pattern prediction. This work is an important step

towards the hippocampal cognitive neural prosthesis de-

sign. (To be elaborated in Section IV)

• We have achieved good speedups in doing both GLVM
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parameters estimation and output prediction compared

with the previous software-based approach. (To be elab-

orated in Section III)

II. SYSTEM IDENTIFICATION

A. The Generalized Laguerre-Volterra Algorithm

In this subsection, we have a brief review on the generalized

Laguerre-Volterra algorithm. The detailed description of this

mathematical model can be found in Section 2 of [2].

The MIMO GLVM can be decomposed into a series of

multi-input single-output (MISO) models which are struc-

turally identical. Each MISO model projects to a separate

output and has its own physiologically plausible components

as shown in Fig. 1. One important variable in the MISO

system is the pre-threshold membrane potential w. An all-or-

none output spike is generated when w crosses a predefined

threshold value θ.

w itself is determined by three system variables: 1) the

synaptic potential u which is generated by a feedforward

Volterra kernel K, 2) the after-potential a which is generated

by a feedback Volterra kernel H and 3) a noise term ε
which captures the influences of intrinsic neuronal noise and

unobserved model inputs.

One of the major challenges in direct Volterra modeling is

the large amount of open system parameters to be estimated,

which brings considerable computational burden and makes

the model easily untrackable. To overcome this problem, we

employ the Laguerre expansion of Volterra kernel (LEV)

technique by which both feedforward and feedback Volterra

kernels are expanded with the Laguerre basis functions. With

model input and output first convolving with the basis func-

tions, the number model coefficients are largely reduced and

can be updated in a iteratively way using the re-weighted least-

squares method [6].

B. Architecture of the Hardware Platform

The general architecture of the hardware platform can be

found in Fig. 2. The hippocampal neural firing recordings

gathered from animal experiment are pre-stored in the host

desktop. They are read and sent to the FPGA processing

core via Ethernet connection. The hardware processing core

is consisted of several important units, which are functional

modules designed to address different stages of the algorithm.

On completion of the DSP by these design units, the calcula-

tion results are sent back to the host desktop via the Ethernet

IP. Some results are looped back to certain registers for the

next round iteration. These design units can be categorized

according to their specific functions as discussed below.

1) Calculating the Membrane Potential: The membrane

potential w is an important parameter in the MIMO GLVM.

At the estimation stage, it is linked to the firing probability

via the Gaussian error function; at the prediction stage, it is

one of the inputs to the threshold-trigger where the predicted

spikes are generated. w is calculated by U1 and U2 in Fig.

2. U1 is designed to convolve the model input and previous-

round model output with the Laguerre basis functions while
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Fig. 2. Overview of the hardware architecture. (U1 is the Convolution
Unit; U2 is the Multiplication and Accumulation Unit; U3 is the Firing
Probability Calculation Unit; U4 is the Laguerre Coefficients Updating Unit;
U5 is Gaussian Random Number Generator; U6 is the Threshold Trigger;
U7 is the Control Unit; X and Y are model input and output; w is the pre-
threshold membrane potential; P is the neural firing probability; C is the
Laguerre coefficients.)

U2 performs the multiplication and accumulation (MAC)

operation between the convolution products and the Laguerre

coefficients. Unlike our previous design, in the new architec-

ture, U1 and U2 can be fully pipelined when the system works

in the prediction mode due to the elimination of feedback loop

of the model coefficients. In U1 and U2, different number of

processing element (PE) can be adopted, by making a tradeoff

between circuit size and calculation efficiency. For the compact

architecture, only 1 PE is adopted while for the fully paralleled

architecture, the number of PEs is equal to the number of

model inputs N (N=64 in current system). The architecture

can thereby be implemented in a wide range of Virtex-6 family

devices given its multi-fold scalability [5].

2) Calculating the Firing Probability and the Laguerre

Coefficients: The neural firing probability P is calculated by

the U3 component and the Laguerre coefficients C are updated

iteratively by U4. P is acquired via a Gaussian error function

P (t) = 0.5 − 0.5erf
(

θ − u(t)− a(t)/
√
2σ

)

. There are

several methods to calculate the error function in hardware. An

easy approach is to transform the calculation of error function

to the exponential function using erf(z) ∼=
√

1− e−
4

π
z2

.
Other methods and detailed comparisons can be found in [5].

The exponential function itself is calculated by the method

of Taylor expansion (order = 18) given the limited data

range ([−4
√
2, 4

√
2]) of the independent variable in current

system. Laguerre coefficients can thereby be acquired by

C = C+R∗((1/P∗dP )′+(ŷ−P )), where dP is the gradient

of P and ŷ is the current value of model output. C is updated

only when the system works in the estimation mode. In the

prediction mode, it appears as a constant.
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TABLE I
DESKTOP HOST CONFIGURATION

CPU
Intel Core i7-2620M

(Turbo Boost to 3.40 GHz)

Memory size
8GB

(DDR3 1333MHz)

C compiler
gcc 3.4.4-999

running on Cygwin 1.7 platform

Interface
Gigabit Ethernet

with jumbo frame enabled

3) Predicting the Output Spikes: This part of circuity is

activated only when the system works in the prediction mode.

An output spike is generated when the summation of the

membrane potential and a randomly generated Gaussian white

noise (produced by U5) crosses a threshold value. U6 is

the threshold trigger. The Gaussian random number generator

(RNG) is designed based on the method first proposed by

Tkacik [7]. It is implemented by the bitwise XOR operations

between the lower 32 bits of a 43-bit Linear Feedback Shift

Register (LFSR) and the lower 32 bits of a 37-bit Cellular

Automata Shift Register (CASR).

4) The FSMs and the Control Circuit: The control circuit

(U7 in Fig. 2) is designed for the functional switch between

the two working modes and the control of their respective

timing using Finite State Machines (FSMs). It also has other

functions such as being in charge of RNG seed loading, FIFO

r/w signal generation and component enabling.

III. RESULTS

As mentioned in Section I, one major contribution of

our work is the acceleration of biocomputation utilizing the

GLVM. With the aid of the FPGA-based hardware platform,

the computation time of both model coefficients and predicted

output is largely reduced. Computational efficiency is an

important issue in our current research. A typical illustration

is the process of conducting the model selection [8]. There are

three steps to go through before we can make out whether a

particular model input or input pairs contributes to the actual

neuronal firing output, as listed:

1) Incorporate the spike train(s) of this particular input or

input pair into the in-sample data and re-estimate the

model coefficients;

2) Use the updated coefficients and the out-of-sample data

to predict the novel model output;

3) Compare the predicted output data to the actual neuronal

firing pattern and determine if or not this particular input

or input pairs is to be included.

More detailed description regarding model selection can be

found in [8]. Traditionally, the selection is conducted using

the software suite. However, it is very inefficient considering

the long computational time. By using the hardware platform,

this process can be sped up.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Round number

C
a
lc

u
la

ti
o
n
 t
im

e
 (

s
)

 

 

estimation mode

prediction mode

Fig. 3. Calculation time of the software-based platform.

For testing purposes, we use both the software and hard-

ware platforms to process a session of neural recording data

gathered from the male Long-Evans rats performing the de-

layed nonmatch-to-sample (DNMS) task [2]. For the software

part, the generalized Laguerre-Volterra algorithm is run for

successively 10 rounds. The configuration of the software

platform we employ is shown in Table I. The time consumed

for conducting parameters estimation and output prediction is

recorded and shown in Fig. 3.

The data throughput of the software platform is calculated

by Tsw = D × l/
∑l

i=1
ti. D represents the number of data

frames utilized for the test (in our test, it is set as 10,000);

l indicates the times of iteration and t is the execution time

of each round. Using the data gathered, we can calculate the

data throughputs of the software platform (implemented in C)

are 500.90 data frames/sec (for parameters estimation) and

1430.94 data frames/sec (for output prediction) respectively.

For the hardware part, the calculation speed can be es-

timated using equation Thw = D/(De×Kce

fclk
+

Dp×Kcp

fclk
). D

represents the total number of data frames utilized for test (in

our test, it is set as 10,000); De is number of data frames used

for parameters estimation and Dp is the number of data frames

used for output prediction. K is cycles needed for doing one

round of calculation. For parameters estimation, Kce = 67; for

output prediction, Kcp = 68. During the test, the hardware

switches from the mode of estimation to prediction from

the 2,000th input data frame. The overall data throughput of

the hardware platform can be calculated as 3.83 × 104 data

frames/sec. At the stage of estimation, the data throughput can

be calculated as 3.88×104 data frames/sec (D=De, Dp=0). At

the stage of prediction, the data throughput can be calculated

as 3.82×104 data frames/sec (D=Dp, De=0). The hardware to

software speedups are 77.47x and 26.72x respectively during

the two stages of calculation.

Our hardware system is very scalable by implementing

different number of processing elements within each design

component. For the fully paralleled architecture, where the
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TABLE II
NORMALIZED MEAN SQUARE ERROR OF CALCULATION

Variable Name Estimation Mode Prediction Mode

Membrane potential 1.6202
−12

1.6777
−13

Firing probability 2.5843
−11 n/a

Laguerre coefficients 1.4812
−11 n/a

Predicted output n/a 0

number of PEs equals the number of inputs, the data through-

put can reach 1.33×106 data frames/sec at the estimation stage

and 1.00×106 data frames/sec at the prediction stage. The

speedups are 2.66×103x and 698.84x respectively.

The hardware platform achieves good precision when doing

the computations. The IEEE single precision floating point

standard is adopted for representation of most system vari-

ables. We utilize both the hardware and software platforms

to run the two stages of the generalized Laguerre-Volterra

algorithm. During the estimation stage, the values of the three

important system parameters: 1) the membrane potential, 2)

the firing probability and 3) the Laguerre coefficients are

recorded. During the prediction stage, the values of the mem-

brane potential and the predicted model output are recorded.

Defining the normalized mean square error (NMSE) as

NMSE =
∑T

t=1
(y(t)− ỹ(t))2/

∑T

t=1
ỹ(t)2, then we cal-

culate the NMSEs for the membrane potential, the firing

probability, the coefficients and the predicted output at each

stage respectively. The results are shown in Table II.

IV. DISCUSSIONS

A. Cognitive Neural Prosthesis Design

We are now in the process of designing a clinical viable

cognitive neural prosthesis that can be implanted into human

brain as a substitute for the malfunctioned hippocampal CA3

region. This project is consisted of five important stages, as

described in Subsection D, Section V of [5].

Thus far, we have completed the work of the third stage.

Although the final hippocampal neural prosthesis will be

an application-specific integrated circuit (ASIC) which owns

many virtues such as ultra-low power consumption and better

area efficiency, FPGAs are very suitable to be adopted as

the computational platforms for the research at the second

and third stages. This is largely due to their hardware level

reconfigurability which brings great flexibility to the designers.

Besides, FPGAs are more economical owning to the elimina-

tion of the non-recurring engineering (NRE) cost which is

common in AISC design flow.

Our work bridges of gap between the mathematical abstrac-

tion of the GLVM and the VLSI prosthetic device. The current

hardware architecture is to be further upgraded and made more

tailed to future prosthetic applications.

B. Future work

In light of the fact that the design is targeted for clinical

application, there are certain aspects in which the potential

improvements lie.

The first one is the reduction of power consumption. For a

brain implantable neural prosthesis, power consumption is of

critical importance. The battery life should be ideally as long

as possible. Down to the circuit level, techniques employing

reduced characteristics length and high-K metal gate process

optimized for low power applications can be well adopted.

The second one is the adoption of fault-tolerance design

paradigm. It would result in disastrous consequences if the

prosthesis fails in operation or produces erroneous predictions.

Traditional fault-proof techniques can be utilized such as the

employment of hardware, time and information redundancy.

The third one is by resorting to run-time partial reconfigu-

ration technique which is specific for our FPGA platform. By

modifying part of FPGA functions during its operation time,

more flexibilities are brought in. This is also a good approach

for further reduction of both dynamic and static power, and

optimization of the circuit architecture.

V. CONCLUSIONS

We have designed an FPGA-based hardware platform for

implementation of the generalized Laguerre-Volterra model.

This platform achieves two-fold functionality: estimation of

model parameters and prediction of model output. It at-

tains significant speedup in conducting the biocomputation

compared to the previous software platform. A successful

development of the hardware platform is a key stage towards

the fabrication of the clinical viable hippocampal neural pros-

thesis, which serves as our ultimate research objective.
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