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Abstract— Uniform steady state (DC) electric fields, like 

those generated during transcranial direct current stimulation 

(tDCS), can affect neuronal excitability depending on field 

direction and neuronal morphology. In addition to somatic 

polarization, subthreshold membrane polarization of axon 

compartments can play a significant role in modulating 

synaptic efficacy. The aim of this study is to provide an 

estimation of axon terminal polarization in a weak uniform 

subthreshold electric field. Simulations based on 3D 

morphology reconstructions and simplified models indicate 

that for axons having long final branches compared to the local 

space constant (L>4λ) the terminal polarization converges to 

Eλ for electric fields oriented in the same direction as the 

branch. In particular we determined how and when analytical 

approximations could be extended to real cases when 

considering maximal potential polarization during weak DC 

stimulation. 

I. INTRODUCTION 

 Transcranial direct current stimulation (tDCS) is a non-

invasive brain stimulation method to modulate neuronal 

excitability using direct currents injected via scalp 

electrodes. tDCS generates weak electric fields, that are 

uniform on the scale of single neurons/cortical columns 

(“quasi-uniform”), with  both radial (normal to the cortical 

surface) and tangential (parallel to the cortical surface) 

components. For low amplitude currents (<1 mA) weak DC 

electric fields can modulate neuronal excitability by 

membrane potential polarization. Therapeutic applications 

are designed to increase or decrease cortical excitability 

based only on the induced somatic polarization of cortical 

pyramidal neurons. However, in vitro experiments suggested 

that, in addition to somatic polarization, the axonal and 

dendritic compartments also play a role in determining the 

neuronal modulation by DC stimulation, especially when 

considering processing of synaptic inputs [1, 2]. Quantifying 

the state of polarization of axon terminations induced by 

weak DC electric fields can help explain mechanisms of 

tDCS and thus enable rational protocol design. 

 Experimental characterization of axonal polarization in 

animal models is complex and generally indirect due to 

structure and small dimensions of final axonal branches.  

Though interestingly, polarization of the soma can modify 
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action potentials at the axonal termination and affect 

excitatory post-synaptic potential amplitudes [3-5]. 

There are established analytical models to predict 

polarization of a semi-infinite or finite straight axon under 

external electric fields [6-9]; in particular for uniform 

electric fields the maximum polarization occurs at the 

terminals [9]. However, the real geometry of axons is 

evidently more complex and the details of morphology will 

affect polarization. For example, in the case of branches and 

incremental bends, semi-infinite approximations may not be 

valid. Even when numerical simulations are implemented, 

much of the (distal) axonal arborization is absent and it is 

not clear what quantitative inferences can be made for 

thalamocortical and corticocortical projections. Therefore, it 

is unclear what the magnitude of axon terminal polarization 

is in realistic cortical afferents during weak DC stimulation, 

such as tDCS with radial and tangential directed currents. 
In this study we integrated information from numerical 

and analytical solutions of 3D reconstructed neurons and 
simplified cable models, respectively, in order to infer a 
general rule to explain (maximum) axon terminal steady state 
polarization under a uniform electric field. While the 
diversity of neuronal morphology and biophysics indicates 
individual neuron models may be required, a heuristic “rule 
of thumb” is desired for maximum cortical DC stimulation of 
axons. In addition, we consider polarization may be 
dependent or independent of somatic polarization. 

TABLE I 

Nomenclature 

Variables Definition Unit 

Vm Membrane potential mV 

Ve Extracellular potential mV 

τ Time constant s 

λ Space constant mm 

s 
Local coordinate of the 

fiber 
mm 

t Time s 

E External electric field mV/mm 

II. METHODS 

A. Cable Theory Formulation 

 Starting from the cable theory [6], it is possible to 
formalize the effect of extracellular stimulation for a uniform 
fiber in the continuous equation [7]: 
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For uniform electric fields applied to a finite straight fiber 

the activating function (right side of (1)) is zero along the 

membrane except at the ends. In this case a simple analytical 

solution exists relating terminal polarization with the space 

constant and the length of the fiber. Considering the electric 

field in the same direction of the fiber, for l < λ (where l is 

the physical length of the cable) the values of the terminal 

polarization in steady state conditions are ±EL/2 instead for l 

> 4λ the terminal polarizations are ±Eλ. This is valid for 

sealed-end boundary conditions, relaxing that constraint 

changes the terminal polarization [8]. The effect of the 

electric field on the membrane potential is strictly related to 

its projection along the fiber: 

           

           (2) 

 

For neurons (axons) with increased morphological and 

biophysical details (compartment diameter, membrane 

conductance), the polarization solution quickly increases the 

problem complexity [9] as it is necessary to consider the 

polarization of each compartment and then the axial 

currents; such that for “realistic” cases we have no analytical 

solutions. However, with the goal of understanding when 

approximations of polarization are valid (see Results), we 

derived the analytical solution for a cable with a bend (Fig. 

1) and seal-end boundary conditions: 
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where l = l0+l1 (l0 and l1 are the physical length of the two 

segments, mm) because: 
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Under these assumptions the terminal polarization (Vt) varies 
as (Fig. 1): 
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where L = l0/λ0 + l1/ λ1, L0 = l0/ λ0 and L1 = l1/λ 1. 

 
Figure 1.  Terminal polarization of a cable with a bend in a uniform 

electric field along the direction of the first segment, uniform 

distribution of internal passive parameters and constant diameter. The 
terminal polarization varies as function of L1, L0 and θ. For L1>4 the 

terminal polarization always converges to Eλ1cos(θ) irrespective of the 

value of L0. For L1 < 4 the terminal polarization increases with L0. Eλ 1 is 
the maximal value for the given configuration. 

B. Neuron Modeling 

 Cortical neuron polarization, specifically of axonal 
terminations, in uniform electric fields were implemented a 
computational model in NEURON. The 3D neuron 
morphologies were taken from the Neuromorpho database 
(www.neuromorpho.org), in particular 8 different models of 
pyramidal cell (LII\III, LIV, LV) of rat somatosensory cortex 
were chosen (ID: NMO_0116, NMO_00348, NMO_00410, 
NMO_00417, NMO_01134, NMO_01132, NMO_01135, 
NMO_01112). In all cases, 1 V/m uniform electric fields 
were applied through the built-in function e_extracellular(x), 
assuming the conductivity of the medium was constant over 
the extracellular space. 
 The following passive properties were added to each 
neuron uniformly: an internal resistance, Ri, of 155 kΩcm, a 

membrane resistance, Rm, of 70 kΩcm², [10], and the default 

membrane capacitance, Cm, of 1 µF/cm. 

C. Mirror Estimate 

The Mirror Estimate has shown to be a good predictor of 

the steady state membrane polarization under the effect of 

external electric fields for compact structures [11]. For real 

neuron morphologies the value of the membrane potential 

for each compartment (k) is given by: 
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where N is the total number of compartments. 
 In order to quantify the goodness of the estimation we used 
the following matching criteria [5]: 

   , / , ,
mirror m m m

C V mirror V V mirror mirror       (9) 

III. RESULTS 

A. Axon terminal polarization 

Solving the numerical models for radial and tangential 

fields (Fig. 3, B1-2) reveals that the effects of uniform 

electric fields on axonal terminations is influenced by 

numerous factors including the direction of the electric field 

and the orientation and the length of the last branch (Fig. 3, 

C1-2). By incrementally rotating the electric field on the 

“xy” plane (Fig. 3, B3), we found the optimal orientation 

(the direction that produces maximum terminal polarization 

in the specific branch) for each final branch. Importantly, we 

show that for increasing lengths in the optimal direction the 

axonal terminal polarization approaches Eλ (Fig. 3, C3) (the 

space constant is calculated with the diameter of the final 

branch and then normalized in order to compare the results), 

and the optimal direction becomes the final branch direction. 

B. Axon terminal polarization: Analytical approximations 

Noting that maximal polarization in a realistic neuron 

model approaches that predicted for a simple semi-infinite 

axon, we next consider when/how heuristic approximations 

can be used to predict terminal polarization.   

For a fiber with a single (final) bend, based on (7), in the 

case of uniformly distributed passive parameters and 

constant diameter, Eλ is the maximum polarization of the 
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terminal (Fig. 1). In real geometries, the axon diameter 

remains constant after 3 branching points [5] and the internal 

parameter distribution can be considered uniform. Eλ is the 

maximum value of the terminal polarization irrespective of 

the length of the final branch (Fig. 3A). So when is 

maximum polarization achieved and how well does the 

final-bend approximations explain the numerical results? 

In order to formalize the problem we modeled the last 

branch as a straight finite fiber. The solution for the terminal 

polarization depends on the boundary condition at the 

terminal (st) and the boundary condition at the last branch 

point. At the terminal boundary condition is: 
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The branch boundary is however dependent on morphology 

of the entire neuron and cannot be solved analytically.  

Therefore, we can compute this boundary condition, the 

polarization at the branch point, numerically and then use 

this value in the hybrid numerical/analytical solution.  

Alternatively this value can be clamped to fixed arbitrary 

value, such as 0. In either case, given the last branch point 

polarization value V0 and fixing the length equal to l (the 

length of the last branch) we obtain  (11) where L = 1/λ. 
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This expression is a static formalization of the problem of 

the last branch (Fig. 3, A), because V0 changes with L. It is 

useful to collapse the 3D problem into a 1D cable problem 

for the last branch. The shrinking in the z-direction due to 

the slice procedures results in lxy = l.  

 In fact, using the values of V0 and L taken from the 

numerical solution, the expression matches the results of the 

3D computational model (Fig. 3, D1-3, green points). 

 Note by assuming the value V0 = 0, tanh(L) = 1, the 

terminal polarization is: 

          
  
V

t
= Elcos(q)          (12) 

which is equivalent to considering a semi-infinite axon. 

The error per 1 V/m between (11, 12) and the numerical 

solution is comparable for electrotonic length >2 (Fig. 3, D1-

3), on the contrary for smaller lengths the error increases 

using (12) and remains close to zero for (11). Without 

numerical solutions we cannot know the optimal orientation 

and we assume θ=0 for (12). 

C. Axon terminal polarization: Mirror Estimate 

As expected, polarization of terminations electrotonically 

uncoupled with the final branch point is not accurately 

predicted by the Mirror Estimate (Fig. 3, D1-3, purple 

points). We extended the analysis to neurons with axonal 

arborizations for two different set of passive membrane 

parameters (Ri=155 Ωcm, Rm=70 KΩcm² and Ri=155 Ωcm,  

Rm=17.5 KΩcm²). We also considered accuracy with only 

the dendrite reconstruction (by removing the axon) and the 

complete neuron. Finally, we compared the mirror estimate 

and the output of the NEURON model (Fig. 2) and we used 

(9) to evaluate the estimation. Considering only the dendritic 

reconstruction the estimation is accurate for both sets of 

membrane parameters, but for the complete neuron, with 

intact axon, the matching criteria (9) decreases from 0.92 to  

 
Figure 2.  Mirror estimate of a layer 2/3 pyramidal neuron of rat 

somatosensory cortex. On the top: Extracellular potential distribution for 

1V/m along the neuron with axon (left) and without (right). On the middle: 

mirror estimate (red) and computational model of extracellular (black) 
comparison for Ri=155Ωcm, Rm=70 KΩcm². On the bottom: mirror 

estimate (red) and computational model of extracellular (black) comparison 

for Ri=155Ωcm, Rm=17.5 KΩcm². The maximum error occurs at the 
axonal compartments for the smaller of the space constant, geometrical 

features and passive parameters affect the mirror estimate. 

0.54. The maximum absolute error for the first set of 

parameters occurs at axonal compartments with a peak of 

0.63 mV. In fact the matching criteria proposed in (9) gives 

an estimation of the correlation between two curves (e.g. for 

two sinusoidal function with different amplitude but equal 

phase C=1). The closeness of the mirror estimate to the 

numerically predicted membrane potential decreases with 

the loss of electrotonic compactness of the axonal 

arborization (Fig. 2). 

IV. DISCUSSION 

Numerical simulations of cortical neuron polarization 

indicated that terminal polarization is a complex function of 

neuronal morphology relative to the applied electric field, 

with no initially apparent relationship between terminal 

branch length or angle relative to the field, and terminal-

coupling constant. However, for individual branches, 

consideration of the polarization at the optimal electric field 

angle reveals an asymptotic approach to Eλ for branch 

lengths greater than 4λ. Similarly, the analytical 

approximation for a semi-infinite axon (Eλcosθ) was 

accurate for branch lengths >4λ; deviations for shorter 

branches were fully accounted for by considering membrane 

polarization at the respective branch. As expected, the mirror 

estimate, which assumes compact structures, was not 

accurate for axon terminals. 

 The proposed model has two noted limitations: complete 

axonal reconstruction and parameterization. Unfortunately 

entire reconstructions of axonal arborization from slice 

preparation are limited by cutting operation and visualization 
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problems [3, 12]. Most of the computational models try to 

avoid the issue by adding artificial axons to real dendritic 

trees [3, 13, 14]. The proposed model assumes uniform 

distribution of passive parameters, but because we are 

interested in axon terminals the results can easily be 

extended whatever the local values of the space constant are. 

Also not included are active membrane proprieties, which 

may also be relevant in the spread of subthreshold potentials 

[4]. In the present analysis we chose all pyramidal neurons 

because they are, with a few exceptions, the only projection 

neuron of the cerebral cortex [12], but the analysis is valid 

also for other classes of neurons. The model limitations 

(axonal reconstruction and parameterization) can be solved 

with the availability of experimental data, which can confirm 

when our heuristic prediction is correct and when the results 

can be extended to humans cells. Finally, we applied the 

quasi-uniform assumption, but changes in electric field 

along extended axons may be relevant [15, 16]. 
 

 
Figure 3. Terminal polarization by uniform DC electric fields using 

neuron compartment model and analytical/hybrid approximations. A, 
Maximum terminal polarization (Vt) and corresponding optimal polarization 

angle (θ) between the last axonal branch and the electric field direction at 

length (l) of the terminal from the last bend. B1-2, Distribution of 
extracellular potential for radial and tangential uniform electric fields. B3, 

The field is oriented in the direction that maximizes the terminal 

polarization. C1, For radial electric fields, numerically calculated terminal 
polarization is plotted for the electrotonic length of the last axon branch 

(blue), the angle of the last branch relative to the field is also shown (red). 

C2, For tangential electric fields, numerically calculated terminal 
polarization is plotted for the electrotonic length of the last axon branch 

(blue), the angle of the last branch relative to the field is also shown (red). 

C3, Numerically determined maximal terminal polarization (blue) for an 
optimally oriented electric field (angle blue) plotted for the electrotonic 

length of the axon branch is evaluated. Maximum terminal polarization 

approached Eλ (with a field parallel to the last branch) as length, l, 
approached 4λ. D1, Error of the approximation for E = 1 V/m in radial 

direction. D2, Error of the approximation for E = 1 V/m in tangential 

direction. D3, Error of the approximation for E = 1 V/m in optimal 
direction. The best approximation (green dots) of terminal polarization (Vt) 

considers the hybrid solution where the terminal polarization is weighted 

and coupled with the polarization of the bend point (Vₒ). The semi-infinite 
approximation is valid for long final segments (l > 4λ) with deviation from 

the numerical solution fully accounted for by the branch point voltage (Vₒ, 

hybrid model). 
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