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Abstract—Objective: This study describes the analysis of hand 

preshaping using Linear Discriminant Analysis (LDA) to 

predict hand formation during reaching and grasping tasks of 

the hemiparetic hand, following a series of upper extremity 

motor intervention treatments.  The purpose of this study is to 

use classification of hand posture as an additional tool for 

evaluating the effectiveness of therapies for upper extremity 

rehabilitation such as virtual reality (VR) therapy and 

conventional physical therapy. Classification error for 

discriminating between two objects during hand preshaping is 

obtained for the hemiparetic and unimpaired hands pre and 

post training.  Methods: Eight subjects post stroke participated 

in a two-week training session consisting of upper extremity 

motor training.  Four subjects trained with interactive VR 

computer games and four subjects trained with clinical physical 

therapy procedures of similar intensity.  Subjects’ finger joint 

angles were measured during a kinematic reach to grasp test 

using CyberGlove® and arm joint angles were measured using 

the trackSTARTM system prior to training and after training.  

Results: The unimpaired hand of subjects preshape into the 

target object with greater accuracy than the hemiparetic hand 

as indicated by lower classification errors.  Hemiparetic hand 

improved in preshaping accuracy and time to reach minimum 

error.  Conclusion: Classification of hand preshaping may 

provide insight into improvements in motor performance 

elicited by robotically facilitated virtually simulated training 

sessions or conventional physical therapy.   

 

I. INTRODUCTION 

The evolution of the human hand during transport 
(reaching) and prehension (grasping) has been studied 
extensively in order to determine the underlying neural 
mechanisms of motor planning.  Hand preshaping consists of 
both an early phase and late phase.  The early phase is a 
predictive phase where hand formation is selected while 
during the late phase, grasp on the object is optimized [1]. 
During a reaching and grasping task (Fig. 1), the fingers 
initially straighten and the grip aperture increases, and as the 
hand approaches the object, grip closes in order to match the 
size of the object [2].  During the transport phase, the 
posture of hand can be discriminated among various shaped 
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objects and gradually evolves [3]. Previous studies employed 
a reach to grasp experiment to measure finger joint angles of 
subjects with Parkinson’s disease and stroke compared to 
normal subjects with results indicating significant differences 
in hand shaping abilities and kinematics [4,5,6]. 

Stroke can result in physical disabilities such as 
weakening of the limbs, decreased reaction times, and 
disordered movement [7].  Due to the complexity of 
sensorimotor control involved in reaching and grasping 
tasks, even slight impairment of this control can adversely 
affect performance of activities of daily living.   Studies 
show that repetitive training can aid in neural reorganization 
in order to recover lost upper extremity (UE) motor 
functioning [7,8].  This approach to training has resulted in 
improvements in kinematic measurements of reaching and 
finger function along with improvements in clinical tests of 
UE function [9].  

There are several ways to measures changes in motor 
function subsequent to upper extremity rehabilitation in 
persons with stroke.  These include measurements of force 
generation, active range of motion, and performance 
measures.  Additionally, measurements of the ability to 
coordinate or control multiple degrees of freedom of the 
hand may be a useful adjunct to these existing measurements 
due to the complex nature of hand function.  The goal of this 
study is to examine the ability of persons with stroke to 
preshape the hand to conform to different shaped and sized 
objects as an indicator of the brain’s ability to coordinate 
these multiple degrees of freedom.  Validity of this approach 
will be tested using classification of hand posture, by 
examining changes in preshaping ability, demonstrated by a 
group of subjects subsequent to two weeks of intensive 
motor training. 

 

Figure 1. Reach to grasp test schematic: Trial begins with hand at rest, 

placed in initial preset position.  At cue, (1) subject reaches for the shape 

(centered), (2) places it on a 7.5 cm high target platform, (3) return to initial 

position.  Trials are run for both hemiparetic and unimpaired hand.   

Classification of Hand Preshaping in Persons with Stroke using 

Linear Discriminant Analysis* 

Saumya Puthenveettil, Gerard Fluet, Ph.D, Qinyin Qiu, Ph.D, and Sergei Adamovich, Ph.D, Member, 

IEEE 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

4563978-1-4577-1787-1/12/$26.00 ©2012 IEEE



  

II.   METHODS 

A.     Subjects and Motor Training Program 
   Eight subjects post stroke, average age 52, five males 

and three females with hemiparesis were recruited for this 
study.  Time since stroke varies from 10 months to 140 
months.  Five subjects have cortical lesions, 3 subjects have 
subcortical lesions.  Average Chedoke McMaster (CM) Arm 
Impairment Inventory score is 5.2 and average CM Hand 
Impairement Inventory score is 5.3. Wolf Motor Function 
Test (WMFT) [10] and Jebsen Test of Hand Function 
(JTHF) [11] measurements were taken for each subject.  
Average WMFT pre training score was 86 and average JTHF 
pre training score was 112.  Force measurements and wrist 
and finger joint angle measurements during reach to grasp 
tests were acquired pre and post training.  Four subjects 
trained their hemiparetic hand with interactive virtual reality 
(VR) computer games and four subjects trained their 
hemiparetic hand with a program of non-automated 
repetitive task practice (RTP).  For both groups, each 
subject’s total duration was 2.5 hours per session.   

 

B.   Data Capture 
Subjects sat in front of a flat table and were presented 

objects of five different shapes and dimensions.  Objects 
shapes and dimensions are as follows: small circle (diameter 
d=3.2cm), small cube (l=9.5cm, w=3.2), big circle 
(d=5.7cm), big cube (l=6.7cm, w=5.7cm), huge circle (d=10 
cm), and a spray bottle (d=3.81 cm, height=10.8 cm).  
Position of joints and rotation of the subjects’ arms were 
recorded using four electromagnetic sensors (trackSTARTM 
system, Ascension Technologies, Inc.) attached with 
adhesive tape to the shoulder, elbow, wrist, and trunk.  
Flexion and extension of finger joints were measured using 
resistive bend sensors in a glove (CyberGlove®, Immersion, 
Inc.) worn on both hands.  The flexion/extension of the 
metacarpophalangeal (MCP), proximal interphalangeal 
(PIP), and distal interphalangeal (DIP) joints of all five 
fingers were included in this study as well as 
abduction/adduction joints of all five fingers.  A six-axis 
force/torque sensor system (Nano17TM, ATI Industrial 
Automation) was mounted below the object to measure the 
time at which the object was lifted.    All three devices were 
programmed using MATLAB and merged using C++.  
Devices were synchronized to capture data at 100Hz. 

 

C. Procedure 
The CyberGlove® sensors were individually calibrated 

for both hands for each subject during pre and post training 
sessions.  Calibration measurements were obtained with 
hand position corresponding to zero degrees, 90 degrees, 
and 20 degrees by directing subjects to flatten their hand on 
a table with fingers together, make a fist, and keep hand flat 
on surface with fingers stretched apart respectively.  At the 
beginning of each trial, the subject’s hand is in a preset 
initial position.  When cued, the subject is asked to reach to 
and grasp the object at a comfortable speed.  Once the 
object is grasped, it is lifted by the subject and placed on a 
7.5 cm high platform on the table surface (Fig. 1).  Trials 
were run for both impaired and unimpaired hands.  Total 

trials per experiment were 120 (6 shapes x 2 hands x 10 
trials).  If an object was not grasped successfully, another 
trial was run to replace it.   

D. Analysis 

Data from CyberGlove
®
 is stored in a matrix of twenty 

columns that correspond to twenty of the twenty-two joint 

angle sensors.  Rows of the matrix correspond to total 

samples of data collection.  All glove data were transformed 

into degrees such that the angle for each sensor at every 

moment in time is a fraction of the original calibration angles 

for each sensor.  Wrist trajectories and force sensor data 

were examined in order to determine movement onset and 

offset times. Onset and offset times from force sensor data 

and wrist kinematics were used to determine a window of 

time for preshaping of the hand for each subject.   

Movement onset 1 is the time that movement first begins, 

offset 1 is the time the hand reaches the object, and onset 2 is 

the time of object lift.  Onset 1 is measured as 5% of peak 

velocity between onset 1 and offset 1.  Fig. 2 is a kinematic 

profile of the entire movement sequence of the proximal 

interphalangeal joint beginning with initial resting position 

and corresponding velocity profile.  Phase 1 refers to the 

initial resting position upon hearing the bell. Phase 2 begins 

movement and corresponds to the reaching phase where hand 

preshapes to the object’s shape. Phase 3 begins when the 

hand reaches the object and the subject is struggling to pick 

up the object. Phase 4 begins with hand picking up object 

and transporting the object to the platform. Phase 5 refers to 

the time when the object is placed on the platform. Phase 6 

refers to when the hand returns to the initial resting position. 

Phase 7 is the end of movement where hand is resting.  Fig. 3 

shows kinematic profiles of both the impaired and 

unimpaired hands for index PIJ.  

Linear Discriminant Analysis (LDA) is used to compare 

how accurately hand posture during the preshaping phase can 

predict what the target shape is pre and post rehabilitative 

training.  LDA creates a decision boundary between different 

classes of multidimensional data.  In this classification study, 

the training data, or the two classes are hand postures for two 

different shapes at one instant of time across multiple trials. 

An observation is classified into one of the two classes by 

calculating the Mahalanobis distances between the hand 

posture to be classified and the hand posture for each class 

where S
-1 

is the pooled covariance matrix, where xi is a 

multidimensional observation, and µj is a multidimensional 

mean vector for the jth class [12].  

                  Dij
2 
= (xi-µj)' S

-1
(xi-µj)                               (1) 

An observation is classified into one of two classes that 

has the minimum distance or maximum posterior probability 

which is a function of Dij
2
.  In order to compare hand 

postures using LDA, all movement data were synchronized 

such that onset 1 across trials occurred at the same time.   
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Figure 2.  Index PIJ joint angle sensor from CyberGlove® plotted with  
velocity profile from wrist sensor. Seven phases of movement are involved  
in the reach to grasp test 

 
Figure 3.  Kinematic trajectories for subject’s impaired and unimpaired 

hand (joint PIJ of index finger).  Impaired hand shows more variability in 

movement and instability.  

 
Data captured during the reaching phase was normalized 

to 100 data points.  LDA was performed from times between 
onset 1 and offset1 to predict which of the two objects the 
hand posture belonged to.  Sensors measuring PIP, MCP, 
and abduction angles, of the index through pinky fingers 
were analyzed to produce an eleven dimensional vector for 
two classes.  For every moment of time the posterior 
probability of one observation belonging to one of the two 
classes was calculated and the higher posterior was awarded 
the observation.  Misclassification rate at every time point 
across trials was tabulated in order to report classification 
errors. 

III. RESULTS 

  All subjects show improvement in JTHF and WMFT 
scores subsequent to training suggesting that they may have 
made improvements in motor function.  Finger joint angle 
classification errors indicate the percentage of misclassified 
observations from the true class. Results from all eight 
subjects show a decrease in error as movement progresses 
post UE motor training of the hemiparetic arm and hand 
(Table 1) indicating that during hand preshaping, the 
subjects’ abilities to form and optimize hand shape 
improved.  Subjects 2, 3, and 7 do not reach an error of zero 
pre and post training. However, throughout their movement, 
classification error post training is lower than that of pre 

training.  Data from Fig. 4 and Fig. 5 correspond to the 
preshaping phase which is epoch 2 in Fig. 2.  Classification 
error rates were lower for the impaired hand post training 
(Fig. 6).  Fig. 7 shows a classification error profile where the 
unimpaired hand performs at a higher accuracy than the 
impaired hand.   These preshaping error rates correspond to 
Subject 6 to distinguish between two objects “spray bottle” 
and “small cube” for both impaired and unimpaired hands.  
Post training, Subject 6’s impaired hand reaches a value of 
zero error earlier in time and more closely resembles the 
unimpaired hand.  Post training, Subject 6 improves in the 
ability to keep hand in an identical resting position for both 
shapes (as indicated by higher classification error at 0% 
movement time).   

 
Figure 4.  Subject 4’s Kinematic data obtained prior to training. Data is 

segmented at onset 1 and offset 1 to correspond to time when movement 

begins to time when hand touches object (preshaping phase). 

 

 
 

Figure 5.  Subject 4’s Kinematic data obtained after training. Data is 

segmented at onset 1 and offset 1 to correspond to time when movement 

begins to time when hand touches object (preshaping phase). 

 

 
Figure 6.  Subject 4’s Classification Error for Figures 4 and 5 to 

discriminate hand postures for shapes ‘huge circle’ and ‘small cube’.  A 

decrease in classification error for post treatment (Figure 5) illustrates the 

the subject’s ability to effectively shape the hand during reaching. 
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Table I. MINIMUM ERROR TIMES 

 
 

 
 

Figure 7.  Subject 6's classification errors decrease as movement progresses.  
Classification error of unimpaired hand is less than impaired hand.  Hand 
posture is distinguishable earliest in time for the unimpaired hand.  After 
training, impaired hand more closely resembles unimpaired hand and 
reaches a minimum error earlier in time. 

IV.  DISCUSSION 

As a group, subjects tend to begin with larger error rates 
since during the resting position finger joint angles show 
little differences between objects, and minimum error rates at 
the end of movement since object has been grasped to form 
the contours of the shape.  When movement begins 
(transport), the hand shape gradually evolves in order to 
optimize grasping and lifting of the target shape [3].  
Improvement in classification errors or decrease in error 
during post training sessions may indicate improvement in an 
ability to coordinate finger motion.  Since the classification 
error results consider eleven finger joint angles from the 
index to pinky fingers, this analysis may provide insight into 
improvement in coordination of multiple degrees of freedom 
to preshape the hand to the object shape.  Since reaching and 
grasping involve different neural mechanisms, patients with 
neurological difficulty such as stroke subjects may be able to 
reach efficiently but have difficulty grasping and vice versa 
[13].  Fig. 3 above demonstrates a smooth and consistent 
joint angle trajectory of the unimpaired hand and the 
hemiparetic hand trajectory which shows disruptions in 
coordination and an inability to maintain stability.  It is this 

variance in the trajectory of the joint angles of the 
hemiparetic hand that is hypothesized to have varied post 
treatment. In addition, there is an improved ability to 
position fingers with precision at time zero (Fig. 5).    

V.   CONCLUSION 

 Classification of finger joint angles may be beneficial in 
assessing improvement in hand preshaping and motor 
control.  Virtual reality training and conventional physical 
therapy of the hemiparetic arm and hand can improve stroke 
subjects’ abilities to reach for objects and grasp them.  
Improvement in hand preshaping accuracy following training 
can be used as an additional measurement for assessing the 
effectiveness of upper extremity rehabilitation. 
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