
  

 

Abstract— The purpose of this research was to compare 

different adaptive algorithms in terms of their ability to 

determine temporal gait parameters based on data acquired 

from inertial measurement units (IMUs). Eight subjects 

performed 25 walking trials over a force plate under five 

different conditions; normal, fast, slow, simulated stiff ankle 

and simulated stiff knee walking. Data from IMUs worn on the 

shanks and on the feet were used to identify temporal gait 

features using three different adaptive algorithms (Green, 

Selles & Sabatini). Each method’s ability to estimate temporal 

events was compared to the gold standard force plate method 

for stance time  (Greene, r = .990, Selles, r = 0.865, Sabatini, r = 

0.980) and double support time  (Greene, r = .837, Selles, r = 

.583, Sabatini, r = .745). The Greene method of estimating gait 

events from inertial sensor data resulted in the most accurate 

stance and double support times. 

 

I. INTRODUCTION 

emporal gait parameters provide information about 

changes in a person’s movement patterns. Research has 

shown that the variability of temporal gait parameters 

can be used to predict risk of falling as well as future 

mobility disability in the elderly [1, 2]. Temporal parameters 

can also be used to track rehabilitation progress or to assess 

the effectiveness of a rehabilitation program. 

 

Traditionally, temporal gait parameters are obtained in 

expensive and complex biomechanics laboratories. With 

advancing inertial sensor technology, gait parameters can 

now be collected as a patient goes about their daily lives [3]. 

Ongoing monitoring of temporal variables in the community 

setting could play a role in early detection of disease, 

measurement of falls risk, or monitoring progression during 

rehabilitation.  It is critical that the algorithms used to 

identify temporal variables are as accurate as possible to 

provide meaningful and clinically relevant information.  

Furthermore, clinicians need to know how different 

algorithms compare to each other in order to select the most 

accurate one for clinical implementation. 
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Two of the most commonly referenced methods of gait 

event detection via inertial sensors on the lower limbs utilize 

rotation rate data from the shank and the foot [4, 5]. The 

shank rotation rate method is based on the fact that during 

each swing phase, the sagittal plane gyroscope will show 

one large spike. Toe-off (TO) is found at the minimum prior 

to the large spike and initial contact (IC) is found at the 

minimum after the large spike [4]. The foot rotation rate 

method is based on finding a large positive spike followed 

by a large negative spike on the sagittal plane foot rotation 

rate curve after flat foot. TO is found at the peak on the first 

spike and IC is found on the zero crossing after the negative 

spike [5].  

 

These methods have been shown to be accurate for 

detecting gait events on normal people walking in the 

laboratory at normal speed. However, recent research has 

shown that an adaptive algorithm with several checks is 

required to detect gait events for abnormal gait or different 

walking speeds [6, 7].  

 

An adaptive algorithm refers to a method of finding gait 

events, which takes into account the fact that walking can 

occur at vastly different speeds and with vastly different 

motor patterns. Instead of directly searching for features like 

traditional algorithms, adaptive algorithms have multiple 

checks to ensure the desired features are found in the correct 

area or they use different methods of feature finding for 

different movement patterns.  

 

Two main adaptive algorithms have emerged from the 

literature. The first by Selles et al. utilizes an IMU on the 

lateral aspect of the shank [7]. This algorithm first estimates 

stride time in order to optimize filter coefficients in order to 

find desired features correctly for various walking speeds. 

The algorithm then roughly estimates gait features on the 

filtered curve and in small windows around the estimated 

point searches on the unfiltered acceleration curves to zero-

in on IC and TO. The second adaptive algorithm, by Greene 

et al. uses sagittal plane rotation rate data from the shank and 

zeros in on gait features in a similar fashion as Aminian et 

al. describe in their paper. However, the authors adopt 

several checks for IC, TO and mid-swing that are all based 

on adaptive threshold calculations. This allows gait event 

detection to occur at any walking speed, even during 

shuffling [6]. 

 

A comprehensive comparison of algorithms to estimate 

gait temporal parameters is not complete without including 

the commonly used Sabatini method of gait event detection 
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via sagittal plane rotation rate from the foot [5]. This 

algorithm was made adaptive for this study by using the 

adaptive component of the Greene algorithm to roughly 

estimate events and the Sabatini method method to zero-in 

on the features. 
 

The purpose of this research is to determine which 
adaptive algorithm is most accurate at estimating temporal 
gait parameters. 

II. METHODS 

Eight volunteer participants were recruited for the study. 

Six were female and two were male. Ethical approval was 

granted by the Universities ethical review board and each 

subject signed an informed consent form. The participants 

average age was 27.4 years (+/- 2.67 years), their average 

weight was 59.1 kgs (+/- 12.4 kgs) and their average height 

was 1.68m (+/- 0.11m).  

 

The participants performed a total of twenty five 15m 

walking trials in a biomechanics laboratory. Subjects 

performed 5 trials under each condition. The five conditions 

were; normal, fast, slow, stiff ankle and stiff knee walking. 

Stiff ankle gait was simulated by use of a lace up ankle brace 

which restricted ankle plantar-flexion. Stiff knee gait was 

simulated by use of athletic tape over the anterior aspect of 

the knee to restrict knee flexion.   

 

The stiff ankle condition was included to analyse 

algorithm performance with abnormal ankle movement 

patterns. Diseases that often result in abnormal plantar-

flexion activity include Parkinson’s disease, stroke, diabetes 

mellitus and cerebral palsy [8, 9]. The stiff knee condition 

was included to look at algorithm performance with 

abnormal knee movement patterns. Neuro-degenerative 

diseases such as Parkinson’s disease often result in 

decreased knee flexion at initial swing; which can lead to 

and increase likelihood of a fall [10]. 

 

Two AMTI force plates (Watertown, Massachusetts) 

embedded into the floor of the laboratory were used as the 

gold standard to determine when IC and TO occurred. IC 

was identified when the vertical ground reaction force had 

an upward-going crossing at 10 N and TO was found when 

the vertical ground reaction force had a negative-going 

crossing at 10 N [11]. Stance time and double support time 

were calculated from the force plate data. 

 

Four IMUs (Xsens MTx, Enschede, Netherlands) were 

placed on each subject. Two were placed on the dorsal 

aspect of the foot, with the distal edge of the sensor lined up 

with a line parallel to the frontal plane that intersects the 5
th

 

metatarsal. The other two sensors were placed on the 

anterior aspect of the tibia, with the centre of the IMU at the 

mid-point between the lateral malleolus and the knee joint 

centre. All sensors were held in place using athletic tape. 

Since the IMUs recorded acceleration and rotation rate in 3-

axes, it is possible to obtain sagittal plane rotation rate from 

this sensor set up. 

A. Data processing 

Data was processed using MATLAB 2009b. The Greene 
and Selles methods of estimating gait events were replicated 
from the algorithms presented in their papers [6, 7]. There is 
no published adaptive algorithm that uses sagittal plane foot 
gyroscope data, so gait events were found using the Sabatini 
method by looking for the desired features in 20 m/sec 
windows around the IC and TO points from the Greene 
adaptive algorithm. Data from the right foot was used since 
the constraints were applied to that side. 

B. Statistics 

From each walking trial at least one stance phase was 
determined from the force-plate data. Depending on how the 
subjects other foot hit the second force plate, another stance 
phase as well as a double support phase was also calculated. 
Overall 213 stance times and 126 double support times were 
compared. All stance and double support times were 
averaged for each participant for each condition. A Bland-
Altman style comparison was used to compare the three 
methods of gait event detection to the gold standard force-
plate [12]. Pearson product correlations, mean differences 
and the 95% confidence intervals were calculated between 
the force plate and each of the event estimation methods to 
assess how well each algorithm estimated stance and double 
support times during gait. 

III. RESULTS 

Table 1 shows the stance time comparison between the 
force plate and the various algorithms. Table 2 shows the 
double support time comparison between the force plate and 
the various algorithms. 

The Selles algorithm did not work for 15 walking trails; 
10 of them were stiff knee trials and 5 of them were fast 
walking trials. 

IV. DISCUSSION 

The main finding of this study is that temporal gait 

parameters that are calculated from lower body inertial 

sensors using the Greene method of gait event detection are 

more accurate than temporal parameters that are calculated 

from the Selles or Sabatini method of gait event detection. 

 

The Selles method of gait event detection is based on 

looking at changes in local accelerations at the shank. 

Gravity is not removed from the signal in the Selles method, 

so gravitational acceleration and acceleration due to 

movement are both present. The advantages of using local 

accelerations to detect gait events are twofold; firstly, using 

accelerometers alone is cheaper than using accelerometers 

combined with gyroscopes. Secondly, since the 

accelerometer data is kept in the local orientation, much less 

processing is required than if the method required gravity to 

be removed and the acceleration rotated to a global 

orientation. These are relevant considerations for deployable 

applications, where the processing is happening on the 

sensors themselves or a local smart-phone and the amount of 

processing affects the longevity of the battery. 
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TABLE I.  DOUBLE SUPPORT TIME ESTIMATION COMPARISON 

 

 

TABLE II.  DOUBLE SUPPORT TIME ESTIMATION COMPARISON 

 

Temporal parameters calculated from gait events found 

using the Selles method, were less accurate than using the 

other two methods. The Selles method is based on initial 

aggressive filtering to figure out roughly where gait events 

occur, then using small windows around the approximate 

values, looking on the unfiltered local accelerations to find 

specific features which represent gait events. The filter 

coefficients to determine approximate gait events were 

where this method fell down. When looking for approximate 

gait events the filter sometimes did not produce the desired 

type of curve. This was especially prevalent in the slower 

trials; the filter to find approximate TO was meant to 

produce a curve with two peaks during each gait cycle, but 

sometimes resulted in a curve with one peak per gait cycle or 

none. In 15 trials the filter resulted in such a different curve 

that the event estimation was deemed to be fundamentally 

flawed and the test was not included in the results. 

 

It is not clear whether or not, the fine features that Selles 

et al. proposed as IC and TO are in fact those locations. 

Unfiltered acceleration signals from the shank are very noisy 

and different movement patterns can result in vastly 

different looking signals. Perhaps, creating more checks in 

determining the correct filter coefficient could result in a 

more accurate estimation, but this would only work if the 

fine features to zero in on exact gait events are accurate. 

 

There is no published adaptive algorithm using the 

Sabatini method of gait event detection. Since the Sabatini 

method is so popular in the literature the authors felt it was 

 

Figure 1.  Sagittal plane rotation rate data from both feet. The first TO is 

found later on the peak, whereas the second TO is found earlier because the 

first hump has a higher peak value. This discrepancy is why the Sabatini 
method of estimating double support time is inaccurate. 

important to include it in this analysis. The algorithm used in 

this study used the Greene adaptive algorithm to first find 

approximate IC and TO points and then zeroed in on IC and 

TO at the points described by Sabatini.  

The Sabatini method of gait event detection is based on 

using sagittal plane gyroscope data from the foot. This 

location of sensor placement has the advantage of being able 

to be embedded into a shoe, which would not require a user 

to put on anything extra than their shoe and would enhance 

the ease of use of a deployable application. The Sabatini 

algorithm is nearly as good as the Greene algorithm at 

estimating stance time for all conditions and double support 

time for different speeds. However, the Sabatini method 

cannot reasonably estimate double support time during the 

constrained walking conditions. 
 

Some subjects had a double-hump feature at the peak foot 
rotation rate where TO was found. At different times either 
the first peak or the second peak would be found as TO 
depending on which peak had a higher maximum. This 
inaccuracy in finding TO seems to account for the poor 
ability of the Sabatini method to estimate double support time 
because the differences between the two peaks is a large 
percentage of the relatively short double support time. The 
Sabatini method detects stance time reasonably well because 
this double-hump difference is a very small percentage of the 
overall stance time; one peak or the other both result in 
reasonably accurate data. This problem is illustrated in Fig. 1, 
where two successive TO’s are shown. The first peak has a 
local maximum later and TO is found there, whereas the 
second peak has a local maximum earlier and TO is found 
there. 

The Greene method of gait event detection is based on 

using sagittal plane gyroscope signals from the shank, which 

Stance time r Mea

n 

diff 

Lower 

95% 

CI 

Upper 

95% 

CI 

CI 

widt

h 
Different 

speeds 

Greene .997 .037 .014 .060 .045 

Selles .679 .030 -.170 .231 .401 
 Sabatini .986 .006 -.048 .061 .109 

Constrai-

ned gait 

Greene .943 .050 -.018 .118 .135 

Selles .888 .118 -.063 .108 .171 
 Sabatini .913 .023 -.059 .104 .163 

All 

conditio-

ns 

Greene .990 .042 -.005 .090 .095 

Selles .865 .028 -.138 .193 .330 

Sabatini .980 .013 -.055 .081 .136 

Stance time r Mea

n 

diff 

Lower 

95% 

CI 

Upper 

95% 

CI 

CI 

widt

h 
Different 

speeds 

Greene .856 .044 -.009 .096 .105 

Selles .582 .014 -.049 .078 .127 

 Sabatini .888 .018 -.029 .066 .094 

Constrai-
ned gait 

Greene .810 .055 .011 .098 .087 

Selles .587 .018 -.041 .077 .118 

 Sabatini .242 .022 -.051 .095 .147 

All 
conditio-

ns 

Greene .837 .048 -.001 .098 .099 

Selles .583 .024 -.084 .132 .216 

Sabatini .745 .020 -.039 .078 .117 
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equates to the sagittal plane rotation rate from the shank. 

Seeing as the leg has to swing from behind the body to the 

front of the body for each step, there should a consistent 

increase in rotation rate from the shank during each step. 

Basing feature detection on this consistent, large feature 

seems to be more accurate than basing it on local 

accelerations or foot rotation rate data. Use of the Greene 

adaptive algorithm to find gait events resulted in the most 

accurate temporal gait parameters. 

 
An advantage of using a shank mounted gyroscope 

compared to accelerometers is that, as long as the gyroscope 
is recording data in the correct plane, it does not matter where 
on the shank the sensor is placed. When using the 
accelerometers it is important that they are placed in the same 
location each time as the signal is affected by how far from 
the centre of rotation they are [13]. 

Previously published research that found that shank 

rotation, foot rotation and an acceleration based algorithm all 

estimated gait events equally well for normal, healthy gait 

[14]. The acceleration based method used in our study is 

different than the method used in the Jaisewicz study, so it is 

understandable how our results for healthy gait found that 

the acceleration method performed poorly. The shank 

rotation and foot rotation methods in our study were both 

accurate for estimating temporal parameters in normal 

walking at different speeds.  

 

The Jaisewicz study found that using the shank gyroscope 

method was not as accurate when subjects were walking 

with their walking aids (crutches or walkers). This was 

attributed to instability or oscillations around IC and TO in 

that group. In the current study shank gyroscope data was 

accurate at estimating temporal gait features even in the 

constrained gait conditions. This difference in results may be 

due to some combination of the fact that the abnormal 

walking conditions in our study were artificially induced and 

the fact that walking with walking aids was not tested in our 

study. 
 

A.  Limitations 

A limitation to this study is that the constrained gait 
conditions were artificially imposed and were not a result of 
actual gait problems. Another limitation is that shuffling was 
not tested, which is a clinically relevant type of gait since 
many injured and elderly persons walk that way. Also, due to 
limitations in the data collection it is was not possible to 
determine if errors in temporal parameter estimation were 
due to errors in IC or TO feature detection. 

V. CONCLUSION 

When designing an algorithm for a small group of 
homogenous subjects, a basic algorithm may work. However, 
applying such an algorithm to a larger, more heterogeneous 
group of subjects means that the algorithm must be able to 
take into account vastly different movement patterns. 
Multiple checks and possibly different feature detection 
strategies for different movement patterns are necessary by 

use of an adaptive algorithm.  The adaptive algorithm 
proposed by Greene to detect gait events resulted in the most 
accurate temporal gait parameters when compared to various 
other adaptive algorithms. 

ACKNOWLEDGMENT 

This work was supported by Science Foundation Ireland 

under grant 07/CE/I1147. 

REFERENCES 

[1] J. Hausdorff, D. Rios, and H. Edelberg, “Gait variability and fall 
risk in community-livingolder adults: a 1-year prospective 

study,” Arch Phys Med Rehabil, vol. 82, pp. 1050 - 1056, 2001. 

[2] J. S. Brach, S. A. Studenski, S. Perera et al., “Gait variability 
and the risk of incident mobility disability in community-

dwelling older adults,” The Journals of Gerontology Series A: 

Biological Sciences and Medical Sciences, vol. 62, no. 9, pp. 
983, 2007. 

[3] R. LeMoyne, C. Coroian, T. Mastroianni et al., “Accelerometers 

for quantification of gait and movement disorders: a perspective 
review,” Journal of Mechanics in Medicine and Biology, vol. 8, 

no. 2, pp. 137, 2008. 

[4] K. Aminian, B. Najafi, C. Büla et al., “Spatio-temporal 
parameters of gait measured by an ambulatory system using 

miniature gyroscopes,” Journal of Biomechanics, vol. 35, no. 5, 

pp. 689-699, 2002. 
[5] A. M. Sabatini, C. Martelloni, S. Scapellato et al., “Assessment 

of walking features from foot inertial sensing,” Biomedical 

Engineering, IEEE Transactions on, vol. 52, no. 3, pp. 486-494, 
2005. 

[6] B. R. Greene, D. McGrath, R. O’Neill et al., “An adaptive 

gyroscope-based algorithm for temporal gait analysis,” Medical 
and Biological Engineering and Computing, pp. 1-10, 2010. 

[7] R. W. Selles, M. A. G. Formanoy, J. B. J. Bussmann et al., 

“Automated estimation of initial and terminal contact timing 
using accelerometers; development and validation in transtibial 

amputees and controls,” Neural Systems and Rehabilitation 

Engineering, IEEE Transactions on, vol. 13, no. 1, pp. 81-88, 
2005. 

[8] S. Nadeau, D. Gravel, A. B. Arsenault et al., “Plantarflexor 
weakness as a limiting factor of gait speed in stroke subjects and 

the compensating role of hip flexors,” Clinical Biomechanics, 

vol. 14, no. 2, pp. 125-135, 1999. 
[9] M. J. Mueller, S. D. Minor, S. A. Sahrmann et al., “Differences 

in the gait characteristics of patients with diabetes and peripheral 

neuropathy compared with age-matched controls,” Physical 
therapy, vol. 74, no. 4, pp. 299, 1994. 

[10] M. E. Morris, J. McGinley, F. Huxham et al., “Constraints on 

the kinetic, kinematic and spatiotemporal parameters of gait in 
Parkinson's disease,” Human Movement Science, vol. 18, no. 2-

3, pp. 461-483, 1999. 

[11] J. Mickelborough, M. Van Der Linden, J. Richards et al., 
“Validity and reliability of a kinematic protocol for determining 

foot contact events,” Gait & Posture, vol. 11, no. 1, pp. 32-37, 

2000. 
[12] M. J. Bland, and D. G. Altman, “Statistical methods for 

assessing agreement between two methods of clinical 

measurement,” The Lancet, vol. 327, no. 8476, pp. 307-310, 
1986. 

[13] K. Tong, and M. H. Granat, “A practical gait analysis system 

using gyroscopes,” Medical Engineering & Physics, vol. 21, no. 
2, pp. 87-94, 1999. 

[14] J. M. Jasiewicz, J. H. J. Allum, J. W. Middleton et al., “Gait 

event detection using linear accelerometers or angular velocity 
transducers in able-bodied and spinal-cord injured individuals,” 

Gait & Posture, vol. 24, no. 4, pp. 502-509, 2006. 

 
 

4512


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

