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Abstract—Compressive sensing is a lossy compression tech-
nique that is potentially very suitable for use in power con-
strained sensor nodes and Body Area Networks as the compres-
sion process has a low computational complexity. This paper
investigates the reconstruction performance of compressive
sensing when applied to EEG, ECG, EOG and EMG signals;
establishing the performance of a signal agnostic compressive
sensing strategy that could be used in a Body Area Network
monitoring all of these. The results demonstrate that the EEG,
ECG and EOG can all be reconstructed satisfactorily, although
large inter- and intra- subject variations are present. EMG
signals are not well reconstructed. Compressive sensing may
therefore also find use as a novel method for the identification
of EMG artefacts in other electro-physiological signals.

I. INTRODUCTION

There are a number of electro-physiological signals as-

sociated with the normal and abnormal operation of the

human body: the EEG (electroencephalogram) records sig-

nals from the brain; the ECG (electrocardiogram) signals

from the heart; the EOG (electrooculogram) signals from

the eyes; and the EMG (electromyogram) signals from

muscles. Body Area Networks aim to monitor these using

lightweight, easy-to-use and long lasting wearable sensors

to facilitate improved diagnosis and treatment, and a shift

towards personalised and preventative healthcare [1]. For

long term autonomous operation from the physically smallest

batteries, power consumption is a critical design factor. It is

now widely accepted that the sensor power consumption can

be reduced by the inclusion of real-time data compression

embedded within the sensor itself [2], [3]. The challenge

lies in having compression algorithms that provide a high

level of data reduction while introducing little error into the

recorded signal and requiring very little power to operate.

Compressive sensing [4], [5] is a recent lossy compression

technique which is potentially very suitable for use within

this aim [6]. The fundamental compression step is a random

sampling of the input signal and has a very low compu-

tational complexity for running online/in real-time on the

power constrained sensor. This low computational complex-

ity is traded-off with having a higher complexity when the

input signal is reconstructed from the compressed samples.

However, this reconstruction is done on a smart-phone or

fixed computer, which have much larger power budgets than

the sensor node. Due to this beneficial arrangement, hardware
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implementations of compressive sensing sensor nodes for

physiological signals are starting to emerge. [7] presented

an ECG compressive sensing node based upon Texas In-

struments’ popular MSP430 micro-controller. [8] presented

a fully custom compressive sensing micro-chip, testing its

operation using invasively recorded EEG signals.

The underlying theory of compressive sensing has been

established previously [4], [5], however its practical appli-

cation performance is still under investigation. As a lossy

compression scheme there is an inevitable trade-off between

the amount of data compression provided and the amount

of error introduced into the reconstructed signal. The error

depends on two critical factors:

1) The measurement matrix Φ and reconstruction basis

Ψ must be incoherent. (See Section II for definitions.)

2) The input signal x must be sparse in the basis Ψ. (For

x = Ψs the majority of entries in s should be ∼ 0.)

Condition one can be satisfied by choosing entries in Φ from

a random distribution [5]. Condition two can be much more

challenging to satisfy. Generally Ψ is chosen on a signal-

by-signal basis and the reconstruction process is not signal

agnostic. There have therefore been a number of assessments

of the reconstruction performance for different applications

[9]–[12]. However considering each signal in isolation makes

it impossible to test the validity of the signal-by-signal Ψ

requirement and to asses its impact on performance. It is

also not possible to establish the cross-signal performance

of the underlying compressive sensing.

This paper investigates the use of one compressive sensing

scheme on different physiological signals to investigate both

of these effects. The same compressive sensing method,

described in Section II, is used to compress and reconstruct

EEG, ECG, EOG, and EMG signals recorded from the

surface of the body. All of these have their own time and

frequency domain properties, but are electro-physiological in

nature, differing most in principle by the place on the body

they are recorded from. They therefore provide the ideal

inputs for assessing the relative performance of compres-

sive sensing on similar yet different signals. The results in

Section III thus provide a direct comparison of compressive

sensing for these different signals. This is of particular

relevance to the use of compressive sensing in Body Area

Network applications where all of these would intrinsically

be recorded simultaneously. The results establish the baseline

level of cross-signal performance to be expected in such

applications and suggest a new use for compressive sensing

in muscle artefact identification.
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II. METHODS

The compressive sensing scheme used in this work is de-

scribed in Section II-A. Its performance is assessed by taking

pre-recorded electro-physiologic signals and using MATLAB

to decompose and reconstruct them. The difference between

the original and reconstructed signals is then assessed as

differing levels of compression are provided. Four different

input signals, described in Section II-B, are used to test the

one compressive sensing scheme, simulating the use of com-

pressive sensing in a Body Area Network controller where

there are multiple compressively sensed signals arriving to

be recovered using the same reconstruction algorithm. The

performance metrics used are given in Section II-C.

A. Compressive sensing scheme

For each input signal x—here an EEG/ECG/EOG/EMG

channel recorded by placing electrodes on the skin—a com-

pressively sensed representation is generated in the digital

domain by carrying out the matrix multiplication

y = Φx. (1)

Here x is a non-overlapping frame of N samples, and Φ is

an M×N sensing matrix. Thus if M < N data compression

is achieved in y, with compression ratio CR = M

N
.

It is this vector y that is actually passed from the sensor

node to the smart-phone/analysis computer. Reconstruction

of x from y is possible, even if y has fewer samples

than a signal sampled at the Nyquist rate, by solving the

optimization problem

min
s∈ℜN

||s||l1 subject to y = ΦΨs (2)

r = Ψs (3)

where Ψ is a transform (reconstruction) basis in which the

input x can be represented sparsely as s. Ψ must also be

incoherent (have a low correlation) with Φ. r is then the

reconstructed estimate of the original input x.

Depending on the choices for Φ, the minimisation algo-

rithm, and Ψ, many different compressive sensing implemen-

tations are possible, with differing performance levels. For Φ

we use a matrix with entries drawn from a 0 or 1 Bernoulli

distribution, p = 0.6. Zero or one entries reduce the matrix

multiplication required to an accumulation, eliminating the

need for an explicit hardware multiplication stage and greatly

reducing the processing load in the sensor node [7], [8].

We then use a Basis Pursuit optimization procedure [13] to

solve the l1 problem of (2), as it is an iterative algorithm

ensuring strongly polynomial running time. This is used with

a cubic B-spline dictionary for Ψ [14]. The suitability of B-

spline dictionaries for use with sparse problems has been

established previously [15], and they have been found to be

the most suitable basis for use with EEG signals [12].

Finally, all data are analysed in non-overlapping frames

750 samples long (N = 750). Results using N = 375
were generated but did not give any meaningful change in

reconstruction performance and so are not reported here.

B. Analysis data

The four electro-physiological signals used in this work

are described below, all of which have the d.c. offset attenu-

ated using a 0.16 Hz first order filter before processing. Ten

minute sections of single channel data have been analysed

with three different examples of each signal used. For the

EEG, ECG and EMG the three records come from different

people. For the EOG, records 1 and 2 are from the same

subject, but with the eyes open in record 1 and closed in

record 2.

1) EEG: Channel C4 sampled at 208 Hz is used here,

with these data being a sub-set of those reported in [16]. In

addition, to demonstrate the impact of sampling frequency

on the compressive sensing performance new awake EEG

sampled at 2000 Hz has been recorded as part of this work

and a further three records of this are analysed.

2) ECG: Records 107, 118, and 119 of ECG data from

the MIT-BIH arrhythmia database [17], [18] are used here.

These data are sampled at 360 Hz, and mirror the ECG data

used in [7].

3) EOG: New EOG recordings of voluntary eye move-

ments have been performed by the authors for analysis here.

Left eye movements sampled at 1000 Hz are used.

4) EMG: Records slp32, slp37, and slp41 of EMG data

from the MIT-BIH polysomnographic database [17], [19] are

used here here. This data is sampled at 250 Hz and recorded

from the chin as part of a sleep study.

C. Performance metrics

There are many different metrics that can be used for

assessing the reconstruction error introduced by a lossy

compression scheme and no consensus as to the most suit-

able [12]. Ideally the RMS (Root-Mean-Square) of the error

(x − r) should be lower than the RMS noise intrinsically

added by the recording electrodes and amplifiers. However

the RMS is not suitable for comparing between signals as it is

an absolute measure. Instead we quantify the reconstruction

error with the commonly used Percent of Root-mean-square

Difference (PRD):

PRD =

√

∑

i

(xi − ri)
2
/
∑

i

x2

i
× 100% (4)

where i is the sample number. Lower PRD numbers represent

better reconstruction performance. It is calculated over a 10 s

duration, giving 60 PRD values for each analysed record.

The maximum, minimum and median values from these

distributions are plotted.

III. RESULTS

Fig. 1 shows examples of reconstructed EEG, ECG and

EMG signals after compressive sensing at a compression

ratio of 0.19 (140/750). For EEG and ECG the original

signal is successfully reconstructed from the under-sampled

compressively sensed samples. The QRS macro-structure of

the ECG signal is particularly well preserved, allowing heart

rate determination. Introduced distortion is apparent however,

and this is particularly so for the EMG signal.
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Fig. 1. Reconstructed EEG, ECG and EMG signals at a compression ratio
of 140/750. A shorter time slice of the ECG signal is also illustrated.

This is quantified for the four electro-physiological signals

in Fig. 2. Considering the median PRD values, at the

lowest compression ratios the reconstruction performance is

poor in all cases with approximately 100% PRD. As less

compression is provided, in the EEG, ECG and EOG cases

the error reduces substantially and successful reconstruction

is achieved. The EOG and ECG signals are reconstructed

particularly well. In contrast the EMG performance is poor in

all cases and a satisfactory reconstruction is never achieved.

The maximum and minimum PRD values shown in Fig. 2

illustrate that large variances are present in the performance

at each compression ratio. This variance occurs both within

the same record and between the three example signals

(intra- and inter- subject variation). As a result, although

on average ECG records have better reconstructions than

EEG records, in many cases the ECG performance would

be substantially worse than the EEG. Similarly, although the

higher sampling frequency EEG does get consistently better

median performance than the lower sampling frequency

EEG, it is within the inter- and intra- subject variation to be

expected. It is likely that the acceptability of the approach

is dominated by this variation in performance that can be

tolerated, not by the average level of performance.

IV. DISCUSSION AND CONCLUSIONS

Our results demonstrate that signal agnostic compressive

sensing is possible for EEG, ECG and EOG signals. At a

compression ratio of 0.4 these are all reconstructed well and

the median PRDs can be within previously established limits

for successful use of the signals. For the ECG, the PRD

of record 1 is 2.6%, in-line with the performance obtained

in [7], and well below the 9% PRD previously determined

as a good reconstruction [20]. For the EEG the absolute

PRD is higher, although [21] suggested that up to 30% PRD

could be tolerated without affecting the performance of an

automated EEG processing algorithm. EOG signals obtained

the best reconstruction performance, although these were

also the most oversampled (natural bandwidth 30 Hz, 1000

Hz sampling) of the signals used.

The requirement to select Ψ on a signal-by-signal basis

is therefore not mandatory for these signals. Indeed, in all

of the cases considered the reconstruction performance is

highly variable, and this variance in performance is much

larger than the shift in median performance between the

different electro-physiological signals. Therefore it is likely

that performance variance dominates the overall usefulness

of compressive sensing in Body Area Network applications.

As opposed to considering Ψ on a signal-by-signal basis, the

signal agnostic results here thus motivate the use of a time-

varying approach for future compressive sensing. In this Ψ

might change between frames of the same signal rather than

only between signals.

The signal agnostic results have also allowed the com-

parison of performance across signals, and showed that

the EMG signal was never satisfactorily reconstructed. The

PRD is above 50% in all cases. Better performances may

be achievable using different reconstruction bases (Ψ), or

by starting from higher base sampling frequencies—EMG

signals may contain components up to 450 Hz, but the data

used here were band limited and used a 250 Hz sampling

rate. All of the other signals used were sampled much quicker

than their natural bandwidths. However the current result is

of note as EMG artefacts are a well known corrupting factor

in EEG, ECG and EOG recordings. It suggests a potential

new approach for motion artefact identification based upon

compressive sensing, which should be explored further.
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Fig. 2. PRD reconstruction performance of the compressive sensing scheme
on EEG, ECG, EOG and EMG signals. Vertical lines show the maximum
and minimum PRD values found during the reconstruction process. The
median PRD value at each compression ratio is plotted from left to right.
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