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Abstract— Accurate spike sorting is an important issue for
neuroscientific and neuroprosthetic applications. The sorting
of spikes depends on the features extracted from the neural
waveforms, and a better sorting performance usually comes
with a higher sampling rate (SR). However for the long duration
experiments on free-moving subjects, the miniaturized and
wireless neural recording ICs are the current trend, and the
compromise on sorting accuracy is usually made by a lower SR
for the lower power consumption. In this paper, we implement
an on-chip spike sorting processor with integrated interpolation
hardware in order to improve the performance in terms of
power versus accuracy. According to the fabrication results in
90nm process, if the interpolation is appropriately performed
during the spike sorting, the system operated at the SR of 12.5
k samples per second (sps) can outperform the one not having
interpolation at 25 ksps on both accuracy and power.

I. INTRODUCTION

Spike sorting is an important tool to study neural ac-
tivities and brain functions in neuroscience research [1]–
[3]. It is also a key component in cortically-controlled
neuroprosthetics to benefit spinal cord injured patients [4].
Robust sorting performance is an important issue for these
applications [5]. The results of the neural decoding are
less significant without an accurate spike sorting. On the
other hand, making miniaturized and wireless microsystems
for the experiments on free-moving subjects is one of the
current research trends [6]–[13]. On the resource-constrained
systems, the power minimization is required and may result
in the compromise on sorting performance.

One of the design issues for the power and accuracy
tradeoff is the sampling rate (SR). Since the classification
of spikes depends on the features extracted from the spike
waveforms, a better sorting performance usually comes with
a higher SR. However the high SR leads to a larger power
consumption for the recording, processing, and wireless
telemetry, which may not be feasible for the applications.
A SR of 100 k sample per second (sps) is recommended
in [14] for an excellent spike sorting performance. However
the current microsystems are usually designed with the SRs
of 20 ksps or lower [7], [8], [10]–[12].

In this paper, in order to improve the power-accuracy
tradeoff, we integrate the interpolation hardware into the
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Fig. 1. The interpolation can be utilized to improve the power-accuracy
tradeoff of the spike sorting microsystem. With a fixed SR and power
consumption of the neural recorder, our spike sorting system achieves
higher sorting accuracy through the interpolation. With an anticipated sorting
accuracy, the implanted system consumes less power with a lower SR after
the interpolation.

spike sorting microsystem. Since most spike energy is under
6.25 kHz [14], after the waveform reconstruction through the
interpolation, the sorting performance with 100 ksps signal
resolution could be achieved even if the neural recorder has a
low SR for low power consumption. The improvement of the
systems can be interpreted in two different aspects as shown
in Fig. 1. With a fixed SR and the corresponding power
consumption, the interpolation improves the sorting accuracy
of the systems. On the other side, after the interpolation, an
anticipated sorting accuracy may be achieved with a lower
SR as well as a lower power consumption.

After the proof-of-concept algorithm simulation [15] and
the circuit design of interpolation hardware [16], we will
focus more one the system integration and implementation
results in this paper. The remainder of the paper is organized
as follows. The spike sorting microsystem is introduced in
Section II. In Section III, we will show how to efficiently
integrate the interpolation to the neural recording and spike
sorting microsystem to improve the accuracy-power tradeoff.
Section IV shows the implementation results, and Section V
concludes this work.

II. SPIKE SORTING MICROSYSTEMS

A. Neural Recording and Spike Sorting

Most neurons in the brain communicate by firing action
potentials, or spikes. These electrical voltage signals can be
recorded extracellularly with very thin electrodes implanted
into brains. Very often an implanted electrode records the
signals from multiple surrounded neurons, and the recorded
waveform is the superimposed potentials generated by these
neurons. Spike sorting is a kind of reverse process to differ-
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Fig. 4. The proposed on-chip spike sorting system with interpolation hardware. The system is divided into three stages with different SRs. SRDET ,
SRALIGN , and SRFE&CLA represents the data SRs used by the stages of spike detection, alignment, and feature extraction along with classification.
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Fig. 2. The hardware modules of the spike sorting microsystem.
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Fig. 3. The improvement of neuron cluster separation after the interpo-
lation. The original neural signals are sampled at 12.5 ksps and aligned
according to the peak as shown in (a). For (b) and (c), the spike waveforms
are re-aligned after the up-sampling to 25 ksps and 100 ksps with the cubic
spline interpolation. The synthesized neural data of “C Difficult1 noise01”
from [17], [18] are adopted. Different colors is used for different neurons
according to the golden standards (not the classified results). The features
used in the lower figures are the first two principal components after the
haar wavelet transformation of the spikes.

entiate which spike corresponds to which of these close-by
neurons from the superimposed waveform.

Figure 2 shows the hardware modules of the spike sorting.
After the frontend neural recording circuitry amplifies and
digitizes the microvolt neural potentials, the neural samples
are input to the digital processor for spike sorting. The
spikes are usually detected according to their localized in-
stantaneous energy. Then the waveform characteristics, or the
features, of the spikes are extracted after the waveform align-
ment. Spikes with similar features should be corresponding
to one specific neuron. Therefore, the spikes are classified
according to the assembled clusters on the finite-dimension
feature space.

B. Sampling Skew and Power-accuracy Tradeoff

The sorting of the spikes are usually based on the dif-
ferentiation of the spike shapes and the extracted features.
As a result, any waveform variation during the recording
may result in significant degradation on sorting performance.
Sampling skew is one of the main causes for the waveform
variations. During the neural recording, the sampling of the

neural signals is discrete. The hardware can hardly sample
the spikes at exactly the same points of the waveform
characteristics. The time difference, or the so-called sampling
skew, results in the the variation of the spike waveforms and
affect the sorting performance. The most obvious variation
are happened in the neural polarization and depolarization
regions (i.e. peak and valley) which are the waveform
characteristics generally used for spike sorting.

A common solution for the sampling skew is to increase
the sampling frequency. The SR of 100 ksps may be required
by the system asking for extremely high-end sorting per-
formance [14]. However, for portable or implantable neural
recorders supporting a large channel number, low power
consumption is essential. The system with high SR usually
leads to a large power consumption and is not feasible for
the applications. Therefore, the SR of 20 ksps or lower is
generally adopted in the current hardware designs with the
compromise on the accuracy of spike sorting.

III. PROPOSED SPIKE SORTING MICROSYSTEMS WITH
CUBIC SPLINE INTERPOLATION

A. Interpolation

The spikes have the most energy under 6.25 kHz. Ac-
cording to the Nyquist-Shannon sampling theory, it should
be feasible to reconstruct the 100 ksps spike waveforms
through the interpolation if the SR is higher than 12.5 ksps.
An uncompromised spike sorting performance may thus be
achieved even with a SR as low as 12.5 ksps. Figure 3 shows
the improvement of the neuron separation by means of the
interpolation. The neural signals are originally sampled at
12.5 ksps and aligned according to the peak as shown in
Fig. 3 (a). Then the spike waveforms are interpolated to
25 ksps and 100 ksps in Fig 3 (b) and (c) respectively.
After the interpolation, the peaks of the neural spikes are
reconstructed, and the waveform can be re-aligned with
less error caused by the sampling skew. This improves the
separation of neuron clusters on the feature space and leads
to a better sorting performance. For the algorithm analysis of
the using of cubic spline interpolation, please refer to [15].

B. On-chip Spike Sorting Microsystem with Interpolation

In the proposed system, the interpolation hardware is
integrated to improve the power-accuracy tradeoff. Although
the interpolation hardware requires the additional power, it
allows the system to use the recording frontend circuits with
a lower SR in some respects. Since the power consumed
by the recording frontend chips [7] is about an order larger
than the state-of-the-art spike sorting designs [10], [11], the
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Fig. 5. Chip micrograph of the proposed spike sorting microprocessor
with interpolation hardware. The IAD engine performs the interpolation,
alignment, and downsampling as shown in Fig. 4.

TABLE I
SYNTHESIZED RESULTS IN 90 NM CMOS PROCESS

Process 90 nm 1P9M Low-leakage CMOS
Supply Voltage 1.0 Volt
Operation Frequency 20 MHz in Maximum
Chip Area 8.89 (3.50x2.54) mm2

Core Area 5.92 (2.96x2.00) mm2

Power Consumption 87.02 μW (0.68μW/channel)*
*The power consumption is measured under the parameters of 45 samples

spike
and

20 spikes
channel×sec

for 128 channels. {SRDET ,SRALIGN ,SRFE&CLA} are set to
{12.5,50,25} ksps. The algorithms running on the microprocessor are
NEO spike detection, DWT-PCA feature extraction, and k-means classifier.

power tradeoff after the interpolation would finally result in
a smaller total power.

Further, even after the interpolation, some power consump-
tion in spike sorting processor can also be saved if the high
signal resolution is only utilized at the critical step of the
spike sorting. Figure 4 shows the architecture of the proposed
spike sorting processor. The processor is divided into three
stages with different SRs for the specific purposes. In the
first stage, spike detection usually uses the energy detector
and does not need detailed waveform information. Therefore
the low SR (SRDET ) can be used in this stage. In the second
stage, the interpolation is first performed and the detected
spikes can be aligned with a higher SR (SRALIGN) in order to
reduce the sampling skew and improve the ability of neuron
separation. In the third stage, the feature extraction and
classification are operated after the down-sampling. Since
the sampling skew is minimized during the high-resolution
alignment, there should be relatively small waveform varia-
tions after the down-sampling. A lower SR (SRFE&CLA) can
thus be used to minimize the power consumption.

IV. IMPLEMENTATION RESULTS

The proposed spike sorting microprocessor shown in Fig. 4
is implemented and fabricated in 90 nm CMOS low-leakage
process. We use reduced instruction set computer (RISC) to
construct most of the processing modules in order to preserve
the programmability for various spike sorting algorithms.
The cubic spline interpolation [16] along with the alignment
and downsampling are implemented in a dedicated parallel
hardware called IAD engine. Configurations to turn on and
off the interpolation engine are designed to compare the

(a) (b) (c)

Fig. 6. The processing results of the chip. The inputs are pre-recorded
neural signals from the rat hippocampus [19], [20]. The fourth channel in
the data set of d1122206 is used. Different hardware configurations for the
IAD engine are programmed to demonstrate the accuracy with and without
the interpolation. (a) SRDET = SRALIGN = SRFE&CLA = 12.5 ksps. (b)
{SRDET ,SRALIGN ,SRFE&CLA} = {12.5,50,25} ksps. (c) The spike sorting
results of (b) after K-means classification algorithm.

(a) (b) (c)

Fig. 7. The processing results of the chip. The inputs are pre-recorded
neural signals from the rat hippocampus [19], [20]. The fourth channel
in the data set of d14521.001 is used. Different hardware configurations
for the IAD engine are programmed to demonstrate the accuracy with and
without the interpolation. (a) SRDET = SRALIGN = SRFE&CLA = 12.5 ksps.
(b) {SRDET ,SRALIGN ,SRFE&CLA} = {12.5,100,50} ksps. (c) The spike
sorting results of (b) after K-means classification algorithm.

spike sorting performance and power consumption with and
without the interpolation. The RISCs and IAD engine are
cascaded as a processing pipeline and operated simultane-
ously. Figure 5 shows the die micrograph of the chip. Table I
summarizes the chip implementation results.

Figure 6 and Fig. 7 show some testing results of the
chip with the pre-recorded neural signals from rat hippocam-
pus [19], [20]. The data are downsampled to 12.5 ksps
for the chip testing. The NEO spike detection, DWT-PCA
feature extraction, and K-means classification algorithms are
coded in assembling language, compiled to the machine
code, and programmed onto the chip. Note that the algorithm
parameters such as threshold in spike detection, projection
vectors of PCA, and so on are trained off-line with the PC.
Different configurations for the IAD engine are tested and
compared to demonstrate the accuracy improvement of the
spike sorting after the interpolation. In Fig. 6 and 7 (a), the
IAD engine is turned off. Because of the related low SR
and large sampling skew, the boundary of different clusters
of the detected spikes can hardly be seem on the feature
space. In Fig. 6 and Fig. 7 (b), the IAD engine is turned on.
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Fig. 8. The comparison for power and sorting accuracy (CSP, cluster
separation parameter) between different hardware configurations. The CSP
values is from our previous works of [15]. The power of analog recording
frontend is estimated from [8].

Because the sampling skew is reduced, the boundary of the
clusters are more distinguishable. Figure 6 and 7 (c) shows
the corresponding classification results.

Figure 8 shows the improvement of the sorting accuracy
versus power consumption. In this comparison, the sorting
accuracy is referred from our previous algorithm analysis
work in [15]. The power of spike sorting processor is mea-
sured from the chip. The power of analog recording circuit is
estimated from [8], in which 4.4 mW is required for the am-
plifiers and ADCs in 128 channels and 20ksps. We linearly
normalized the number with the sampling frequency in this
comparison. Four configurations of spike sorting processor
are tested as follows: (A) {SRDET ,SRALIGN ,SRFE&CLA} =
{12.5,50,25} ksps; (B) {SRDET ,SRALIGN ,SRFE&CLA} =
{25,100,50} ksps; (C) SRDET = SRALIGN = SRFE&CLA =
12.5 ksps; (D) SRDET = SRALIGN = SRFE&CLA = 25. The
configuration (A) and (B) represents the system with interpo-
lation. The configuration (C) and (D) represents the system
without interpolation. Clearly, in Fig. 8 (a), the spike sorting
processor with interpolation (A and B) has a better accuracy-
power curve compared to the processor without IAD engine
(C and D). In Fig. 8 (b), the power consumption of analog
recording circuits is further included. After the interpolation,
A can achieve similar or even better sorting performance than
D and consumes less power consumption.

V. CONCLUSION

In this paper, the spike sorting processor with interpola-
tion is proposed to improve the performance in terms of
sorting accuracy versus power consumption. The idea is
implemented and fabricated in 90nm low-leakage CMOS
process. The results show that the system in 12.5 ksps SR
outperforms the system in 25 ksps on both accuracy and

power if the interpolation is appropriately utilized in the
spike sorting.

REFERENCES

[1] M. Abeles and M. H. Goldstein, “Multispike train analysis,” Proceed-
ings of the IEEE, vol. 65, no. 5, pp. 762–773, 1977.

[2] J. Carmena, M. Lebedev, R. E. Crist, J. E. ODoherty, D. M. Santucci,
D. Dimitrov, P. Patil, C. S. Henriquez, , and M. A. Nicolelis, “Learning
to control a brain-machine interface for reaching and grasping by
primates,” PLoS Biology, vol. 1, no. 2, pp. 193–208, 2003.

[3] M. Velliste and et al., “Cortical control of a prosthetic arm for self-
feeding,” Nature, vol. 453, pp. 1098–1101, 2008.

[4] Z. Zumsteg, C. Kemere, S. ODriscoll, G. Santhanam, R. Ahmed,
K. Shenoy, and T. Meng, “Power feasibility of implantable digital
spike sorting circuits for neural prosthetic systems,” IEEE Transactions
on Neural Systems and Rehabilitation Engineering, vol. 13, no. 3, pp.
272–279, 2005.

[5] M.D. Linderman, G. Santhanam, C.T. Kemere, V. Gilja, S. O’Driscoll,
B.M. Yu, A. Afshar, S.I. Ryu, K.V. Shenoy, and T.H. Meng, “Signal
processing challenges for neural prostheses,” IEEE Signal Processing
Magazine, vol. 25, no. 1, pp. 18–28, 2008.

[6] R. H. Olsson and K. D. Wise, “A three-dimensional neural recording
microsystem with implantable data compression circuitry,” IEEE
Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2796–2804, 2005.

[7] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black,
B. Greger, and F. Solzbacher, “A low-power integrated circuit for
a wireless 100-electrode neural recording system,” IEEE Journal of
Solid-State Circuits, vol. 42, no. 1, pp. 123–133, 2007.

[8] M. Chae, W. Liu, Z. Yang, T.-C. Chen, J. Kim, M. Sivaprakasam,
and M. Yuce, “A 128-channel 6mw wireless neural recording ic with
on-the-fly spike sorting and uwb transmitter,” in Proceeding of IEEE
International Solid-State Circuits Conference, Feb 2008, pp. 146–603.

[9] T. C. Chen, K. Chen, Z. Yang, K. Cockerham, and W. Liu, “A biomed-
ical multiprocessor soc for closed-loop neuroprosthetic applications,”
in Proceeding of IEEE International Solid-State Circuits Conference,
Feb. 2009, vol. 25, pp. 434–435.

[10] V. Karkare, S. Gibson, and D. Markovic, “A 130-gw, 64-channel spike-
sorting dsp chip,” in Proceeding of IEEE Asian Solid-State Circuits
Conference, 2009, pp. 289–292.

[11] T.-C. Chen, W. Liu, and L.-G. Chen, “128-channel spike sorting pro-
cessor with parallel-folding structure in 90nm process,” in Proceeding
of IEEE International Symposium on Circuits and Systems, 2009, pp.
1253–1256.

[12] M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo, and P. Mohseni,
“An activity-dependent brain microstimulation SoC with integrated
23nV/rtHz neural recording front-end and 750nW spike discrimination
processor,” in IEEE Symposium on VLSI Circuits, 2010, pp. 223–224.

[13] S. Gibson, J. W. Judy, and D. Markovic, “Technology-aware al-
gorithm design for neural spike detection, feature extraction, and
dimensionality reduction,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, to apear.

[14] T. J. Blanche and N. V. Swindale, “Nyquist interpolation improves
neuron yield in multiunit recordings,” Journal of Neuroscience
Methods, vol. 155, no. 1, pp. 81–91, 2006.

[15] Y.-Y. Chen, T.-C. Chen, and L.-G. Chen, “Accuracy and power tradeoff
in spike sorting microsystems with cubic spline interpolation,” in
Proceeding of IEEE International Symposium on Circuits and Systems,
2010, pp. 1508–1511.

[16] T.-C. Chen, Y.-Y. Chen, T.-C. Ma, and L.-G. Chen, “Design and
implementation of cubic spline interpolation for spike sorting mi-
crosystems,” in Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2011, pp. 1641–1644.

[17] R. Q. Quiroga, “Simulated multi-unit extracellular recordings,”
http://www2.le.ac.uk/departments/engineering/extranet/research-
groups/neuroengineering-lab/software.

[18] R. Q. Quiroga, Z Nadasdy, and Y. Ben-Shaul, “Unsupervised spike
detection and sorting with wavelets and superparamagnetic clustering,”
Neural computation, vol. 16, pp. 1661–1687, 2004.

[19] G. Buzsaki, “Physiological data from the rat hippocampus,”
http://crcns.org/data-sets/hc/hc-1/.

[20] K.D. Harris, D.A. Henze, J. Csicsvari, H. Hirase, and G. Buzsaki,
“Accuracy of tetrode spike separation as determined by simultaneous
intracellular and extracellular measurements,” Journal of Neurophys-
iology, vol. 84, no. 1, pp. 401V414, 2000.

4488


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

