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Abstract— Skull thickness and density measures of normal 

pediatric crania would inform multiple disciplines including 

neurosurgery, optical and magnetoelectrophysiological imaging, 

and biomechanical modeling of head trauma. We report on a 

new method for automated extraction of in vivo skull thickness 

and density measures of pediatric crania based on x-ray 

computed tomography scans (CT).  Data were obtained from a 

clinical image repository for pediatric populations in whom no 

pathology was noted.  Skull thickness and density measures 

were systematically obtained across the calvarium.  We find a 

set of measures that correlated with physiological age that are 

likely to prove useful in multiple disciplines. 

I. INTRODUCTION 

Accurate measures of changes in skull morphometrics 
across developmental age are of interest to multiple 
disciplines.  From birth to adulthood significant remodeling 
and growth of tissues make it necessary to define multiple 
models of skull metrics [1, 2].  Morphometric data from 
pediatric populations are of value in surgical evaluation of 
craniofacial deformity [3], in modeling of biomechanical 
stress due to growth or injury [2, 4], for development of 
custom bone conduction auditory prostheses [5], and in the 
creation of head models for source localization in magneto-
electroencephalography (M/EEG) and optical imaging [6, 7] 
However, fontanelles and open sutures in infants produce 
inhomogeneities in skull conductivity, creating significant 
distortions in event related potential (ERP) localization [8]. 
Further, changes in skull height, bone thickness and skull 

 
*Manuscript received March 15, 2012. This work was supported in part 

by NIH grant R43 NS67726. 

Kirk Smith is with the Washington University School of Medicine, St. 

Louis, MO 63110 USA (e-mail: smithki@mir.wustl.edu). 

David Politte is with the Washington University School of Medicine, St. 

Louis, MO 63110 USA (e-mail: politted@mir.wustl.edu). 

Gregory Reiker is with the Washington University School of Medicine, 

St. Louis, MO 63110 USA (e-mail: reikerg@mir.wustl.edu).  

Tracy Nolan is with the Washington University School of Medicine, St. 

Louis, MO 63110 USA (e-mail: tracyn@npg.wustl.edu). 

Charles Hildebolt is with the Washington University School of 

Medicine, St. Louis, MO 63110 USA (e-mail: hildeboltc@mir.wustl.edu).  

Chelsea Mattson is with the Neuroinformatics Center, University of 

Oregon, Eugene, OR 97403, USA (e-mail: mattson.chelsea@gmail.com). 

Don Tucker is with the Neuroinformatics Center, University of Oregon, 

Eugene, OR 97403, USA (e-mail: dtucker@egi.com). 

Fred Prior is with the Washington University School of Medicine, St. 

Louis, MO 63110 USA (e-mail: priorf@mir.wustl.edu).  

Sergei Turovets is with the Neuroinformatics Center, University of 

Oregon, Eugene, OR 97403, USA (e-mail: sergei@cs.uoregon.edu). 

Linda J. Larson-Prior is with the Washington University School of 

Medicine, St. Louis, MO 63110 USA (phone: 314-362-7318; fax: 314-362-

6971; e-mail: lindap@npg.wustl.edu). 

plate composition differ in children from that of adults, 
making simple scaling of adult head models inappropriate 
for the production of accurate head models in infants and 
children [9, 10]. 

Accurate head models rely in part on measures of skull 
thickness and density.  X-ray computed tomography (CT) is 
a good source for these measures but is not routinely 
available in pediatric populations. Furthermore, there is no 
established method for how and where these measures 
should be taken. As a result, there is a paucity of information 
as to how the skull changes during growth, especially in 
terms of thickness and density. This is the first report of CT 
derived automated cranial thickness and density measures 
taken along surface normals from identified soft tissue 
landmarks. We propose and report results for aligning the 
head to a particular frame of reference and for a set of 
automatically defined reference points; but any reference 
plane identifiable by 3 landmarks, and any point locations 
desired on the scalp could be used. 

 

II. METHODS 

 Following an Internal Review Board approved protocol, 

CT data were mined from the clinical repository at 

Children’s Hospital in St. Louis [11]. The goal was to obtain 

CT head data of pediatric patients (birth to 18 years of age) 

where no clinical pathology was indicated. An initial 

screening of radiology reports, covering the years 2007 to 

2011, yielded approximately 300 scans for possible 

inclusion. These scan data were further reviewed for 

coverage, resolution, motion artifact, and pathology. For 

coverage, the scan must contain the top surface of the head 

and the nasion (NAS), pre-auricular right (PAR), and pre-

auricular left (PAL) anatomical landmarks. Resolution was 

required to be no worse than 1.5 mm slice thickness. Planar 

slices and 3D renderings of data were assessed for motion 

artifact and pathology using Analyze software [12]. 

Exclusion criteria included skeletal deformity, pathology, 

and prior head surgery. Applying these inclusion/exclusion 

criteria resulted in a useable data set of 46 subjects. 

Those data meeting criteria were de-identified using our 

in-house developed Clinical Studies Workstation (CSW) 

software[13] and transferred to a secure data repository.  

A. Image Processing 

Data reduction was performed using both the Analyze 

software system and scripts developed in-house using 

MATLAB (MathWorks, Natick, MA, USA). 
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Pre-processing steps were performed using Analyze and 

included resampling to 0.5 mm cubic voxels using trilinear 

interpolation, correcting for  gantry tilt by applying  a shear 

correction factor, and padding the volume  in x, y, or z to 

accommodate spatial changes during rigid body 

transformation when aligning to the local reference system.  

The measurement pipeline consisted of 3 inputs: a 

volumetric CT data set, a text file containing three-

dimensional coordinates of the 3 landmarks defining the 

local reference system, and a list of points defining scalp 

locations from which measurements were made. For our 

application, we focused on generating information to inform 

the development of a pediatric head model for ERP source 

localization. As such, we defined the local reference system 

using the NAS, PAR, and PAL anatomical landmarks in a 

manner similar to that of a commercial software package 

used for ERP localization (Curry, Compumedics Neuroscan). 

Points on the scalp denoting measurement locations were 

roughly approximate to the locations of a standard 10-20 

array of EEG electrodes (Fig. 1) to achieve a uniform 

distribution of points over the head.  

The first stage of the processing pipeline reads the 

(x,y,z) coordinates of the 3 points defining the local 

reference system, calculates a rigid body transformation 

matrix, and transforms the CT image volume using tri-linear 

interpolation to align the 3 points to a common transverse 

plane (image slice). This stage ensures a standardized 

orientation for measurements. The head is isolated from its 

background using a threshold of -400HU to define the skin, 

followed by a connect-and-keep operation using a 3x3x3 

convolution kernel. This procedure was suitable to segment 

approximately 75% of cases. The other cases required 

manual segmentation prior to entering the pipeline. The 

segmented head is converted to a binary format; a 2D 

morphological fill is performed in the transverse, sagittal, 

and coronal planes to fill in the sinuses, and the boundary 

voxels are extracted. 

To automatically locate the measurement points on the 

head surface, the head is modeled as a hemisphere with its 

base coplanar to the plane defined by the local reference 

system and its diameter equal to the distance between the 

PAR and PAL local reference points. As the head is oblong 

in shape rather than spherical, the reference hemisphere is 

translated along the anterior-posterior axis until it is 

equidistant from the most anterior point of the skull and the 

most posterior point of the skull as aligned in the local 

reference system. This also defines a spherical coordinate 

system that was used to locate the points on the head. The 

desired locations are input from a file as azimuth and 

elevation angles in degrees, which are converted to Cartesian 

coordinates on the surface of the hemisphere. To find the 

reference point on the surface of the head, a line is projected 

from the origin as defined by the spherical coordinate system 

(x1,y1,z1) through a point on the hemisphere specified in 

Cartesian coordinates (x2,y2,z2). The intersection of that 

line and the nearest boundary coordinate (x,y,z) located on 

the surface of the head is taken to be the measurement 

reference point. 

The thicknesses and density measures of the skull are 

calculated along the surface normals for the set of reference 

points calculated above (specified by fixed azimuth and 

elevations relative to the NAS, PAR, PAL reference system 

and currently numbering 21).  For each of these points a 

convex patch on the surface of the scalp is created (Fig. 2).  

This stage first cleans up the extracted head surface border 

by discarding all stray voxels not connected to the actual 

border. Then, a "seed point," a point on the border (which is 

closest to the reference point) is identified. Next, a “patch” 

of points on the border that will be used to fit the sphere is 

specified. The parameter of the patch size is set by the user 

and for this application was set to be a radius of 20 mm. The 

patch is then the set of points on the border that are within 20 

mm of the reference point. A patch that is too large may not 

converge in areas of high curvature whereas a patch with a 

small radius may be influenced by noise in the data. Finally, 

the sphere that best fits the voxel patch at a given location is 

found using the MATLAB function “fminsearch”, which 

performs unconstrained nonlinear optimization based on the 

simplex search method of Lagarias [14].  This routine 

optimizes 4 parameters for the sphere, the center xyz-

coordinate and its radius by minimizing the sum of squares 

 
Figure 1: Reference locations where measurements are made. Values in 

parentheses are on opposite side of the head. 

 
 

Figure 2: Calculated surface normals projected into transverse and 

coronal plane on gray scale image (left) and extracted boundary 

(right). Box is reference location. Circle is center of fitted sphere. 

4463



4464



  

the model that best predicted physiological age. This analysis 
demonstrated that BT3, BT4, BT11, BT16 and HU15 were 
the best predictors of age (Table 2). These correspond to 
thickness measures of the skull vertex, right parietal bone, 
left aspect of the frontal bone, right aspect of the occipital 
bone, and a density measure of the left side of the occipital 
bone respectively. The adjusted R

2
 for the model was 0.92, 

p<0.001. We examined the distribution of residual values on 
predicted values and they appeared to be randomly scattered 
about zero. 

Table 2: Model parameters kept as best predictors of physiological age. 

 

Term 

Parameter Estimates 

Estimate Std Error t Ratio P 

Intercept -5.1957 0.7581 -6.85 <0.001 

BT_3 1.3025 0.1615 8.06 <0.001 

BT_4 1.2810 0.3735 3.43 0.001 

BT_11 -1.1955 0.384 -3.11 0.003 

BT_16 1.0261 0.3011 3.41 0.002 

HU_15 0.0029 0.0008 3.66 <0.001 

There were three general patterns for the associations 
between input measurement variables and physiological age 
(Figs 5). Fig 5 top left is representative of a thickness 
measurement with negligible correlation with age (Spearman 
!�= 0.02, P = 0.88).  This pattern shows little change with 
increasing age.  It is possible that this measurement is not 
reliable due to large measurement across the population, or it 
may simply represent a measurement that does not vary with 
increasing age. Fig 5 bottom right illustrates a thickness 
measure with moderate correlation with age (6SHDUPDQ�!�= 
0.62, P < 0.001). This pattern is indicative of a constant rate 
of change during growth, suggesting that it may be a good 
growth marker variable in normal pediatric populations. Fig 
5 bottom left illustrates a thickness measure with very high 
correlation with age (6SHDUPDQ� !� = 0.91, P < 0.001), 
exhibiting a rapid change in the measurement variable during 

the early growth period that lessens with increasing age.  
This pattern is also characteristic of readily obtained external 
measures such as skull circumference and cranial index [9]. 

IV. CONCLUSIONS 

Automated analysis of skull thickness and density (HU) 

from clinically collected data is feasible.  However, data 

quality in clinical images is generally poor, leading to the 

requirement for large datasets from which only a small 

subset may be useful for quantitative analysis.  As expected, 

both bone thickness and density increased with increasing 

age from birth to 18 years of age.  Three general patterns of 

correlation were found between bone thickness and density 

and physiological age.  Some variables were shown to 

increase monotonically with age; some had accelerated 

change during early years of development and slowed with 

increasing change, while some measures remained relatively 

constant with age. The methods presented here provide a 

useful new tool for analysis and modeling of developmental 

changes in skull morphology and can be applied to a wide 

range of disciplines in the biomedical sciences to enhance 

our understanding of cranial development in pediatric 

populations.   
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Figure 5: Top left- Scatter 

plot for bone thickness at 

location 5. Bottom left- 

Scatter plot for bone 

thickness at location 7. 

Bottom right- Scatter plot 

for bone thickness at 

location 16. 
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