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Abstract— Feature extraction of skin lesions is necessary to
provide automated tools for the detection of skin cancer. High-
level intuitive features (HLIF) that measure border irregularity
of skin lesion images obtained with standard cameras are
presented. Existing feature sets have defined many low-level
unintuitive features. Incorporating HLIFs into a set of low-
level features gives more semantic meaning to the feature set,
and allows the system to provide intuitive rationale for the
classification decision. Promising experimental results show that
adding a small set of HLIFs to the large state-of-the-art low-
level skin lesion feature set increases sensitivity, specificity, and
accuracy, while decreasing the cross-validation error.

I. INTRODUCTION

Melanoma causes the most deaths worldwide of all skin
diseases [1]. The World Health Organization (WHO) esti-
mates that the current rate of new melanoma cases annually is
132,000 worldwide, and one of every five American citizens
are expected to develop malignant melanoma in their lifetime
[2]. The mortality rate of malignant melanoma is highly
correlated with the stage in which it is identified. The five-
year survival rate for patients whose melanoma is diagnosed
in its infancy is 98%, but decreases rapidly to 62% if the
melanoma has spread to surrounding tissues, and a bleak
16% if the melanoma has spread to remote parts of the body
[3].

The current clinical standard for diagnosing skin lesions
is visual inspection. One of the most widely used rubrics
for visually analysing a lesion is the “ABCD” rubric [4],
[5]. The dermatologist assigns a score for asymmetry (A),
border irregularity (B), colour patterns (C), and diameter (D).
The resulting summed score is indicative of the patient’s
chance of having malignant melanoma. It has been reported
that expert dermatologists using the ABCD rubric exhibit a
sensitivity of 76.0%-87.7% and a specificity of 61.0%-77.8%
with the aid of a dermatoscope [6].

Most image processing techniques that address this issue
rely on an image obtained with a digital dermatoscope
[8]-[10]. However, it has been reported that only 48% of
US fellows of the American Academy of Dermatology use
dermatoscopes [7], signifying that these methods would not
be incorporated into the majority of clinical settings. Some
methods have recently been proposed that use standard
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camera images [13], [14], but these papers have focused on
preprocessing the images rather than feature extraction and
classification.

The main contribution of this paper is the proposition and
analytical reasoning of high-level intuitive features (HLIF)
that quantitatively describe the degree of irregularity about
a lesion’s border. We define “high-level intuitive” features
as features that have been carefully designed such that their
formulation models a human-observable phenomenon, and
whose score can be intuited in a natural way. In contrast,
low-level features are calculations that were not designed
with the intent of describing a particular human-observable
phenomenon. A feature set that contains HLIFs can provide
understandable justification of a classification result. This is
an important characteristic of the system if doctors are to
trust the system’s diagnostic decisions.

We measure the success of the feature set according to
the sensitivity, specificity, accuracy, and error associated
with leave-one-out cross-validation (LOO CV) trials using
a standard soft-margin linear support vector machine (SVM)
classifier [15]. The three proposed border irregularity HLIFs
are concatenated to a slightly modified version of the feature
set proposed by Cavalcanti et al. [14] which produces better
performance than the original set. The success of this new set
is compared with their original set, as well as the modified
set. Automated lesion detection is a problem not addressed
in this paper.

II. FEATURE EXTRACTION

A. Clinical “Border Irregularity” Description

Clinically, dermatologists visually divide the border de-
lineating a skin lesion into eight segments such that the
lesion is separated vertically, horizontally, and by an axis
at ±45◦ [5]. One point is added to the score for each region
that has abrupt pigment cut-off or irregular notches, thus
B ∈ {0, 1, . . . , 8}. This rubric is not only very subjective,
but the scores themselves are very restricted. The proposed
HLIFs give a more precise measurement for the irregularity
of the entire border which can still be interpreted by the
dermatologist.

B. HLIF for Fine Irregularities

Morphological operations are a set of techniques for pro-
cessing shapes in images [11]. Given a structuring element
such as a disk, one can apply a morphological operation
using this structuring element to alter a shape in some
deterministic way.
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Two of the most fundamental techniques are morpholog-
ical opening and morphological closing. Let A be a binary
image and B be a structuring element. Then, morphological
opening and closing are defined as:

A ◦B = (A	B)⊕B (1)
A •B = (A⊕B)	B (2)

where A 	 B and A ⊕ B are morphological erosion and
dilation, defined as:

A	B =
⋂
b∈B

A−b (3)

A⊕B =
⋃
b∈B

Ab (4)

where Ab is the translation of A by vector b.
Intuitively, morphological closing using a disk structuring

element tends to smooth over sharp exterior valleys. That is,
performing morphological closing on a shape whose border
contains abrupt valleys results in an image with filled valleys
and thus a larger area. Similarly, morphological opening
using a disk structuring element tends to smooth over sharp
interior peaks. That is, performing morphological opening
on a shape whose border contains abrupt peaks results in
an image with truncated peaks and thus a smaller area. In
contrast, morphologically closing or opening a shape with a
smooth border results in little structural change.

The resulting feature is the normalized change in area from
morphological closing and opening:

fB1 =
Aclosed −Alesion

Alesion
+

Alesion −Aopened
Alesion

(5)

where Aclosed and Aopened are the areas of the resulting
mask from performing morphological closing and opening
on the initial lesion mask, and Alesion is the area of the
original lesion. The two measures are summed to account for
both irregular valleys and irregular peaks (both indicative of
an irregular border).

Fig. 1 depicts a lesion mask with the corresponding result
of performing a morphological closing and opening with a
disk of size 20. Note how the resulting mask from morpho-
logical closing tends to smooth over valleys of irregularities
whilst keeping the general structure of the border. Similarly,
the resulting mask from morphological opening tends to
smooth the peaks of the irregularities. The difference in area
of the morphed mask and the original mask thus captures the
amount of change that results from smoothing over irregular
structural features. Combining the two measures results in a
score that represents the overall structural irregularity of the
border.

C. HLIF for Coarse Irregularities

Intuitively, highly irregular borders with many notches
can be viewed as a structure containing high-frequency
information. Fourier descriptors are used to describe a shape
in terms of frequency information. Determining a shape’s
Fourier descriptors is accomplished by representing the x-
axis as the real axis, and the y-axis as the imaginary axis.

Fig. 1. Depiction of morphological closing/opening of the mask of a lesion
diagnosed as malignant (lentigo maligna) melanoma using a disk structuring
element of size 20. Note how the closing smooths the valleys of border
irregularities, and the opening smooths the peaks of those irregularities. In
this example, fB

1 = 0.0910

Thus the points of the shape border are transformed into
a 1D complex number. In particular, if x(i) and y(i) are
the coordinates of the ith pixel, then let s(i) = x(i) + jy(i).
Applying the discrete Fourier transform results in the Fourier
descriptors:

C(u) =

N−1∑
n=0

s(n)e−j2πkn/N (6)

for u = 0, 1, . . . , N − 1.
Fourier descriptor normalization is performed in the fol-

lowing three steps [12]:
1) Translation Invariance: set the first Fourier coefficient,

the DC component, to 0.
2) Scale Invariance: divide each Fourier coefficient by the

magnitude of the second coefficient.
3) Rotation/Point-Order Invariance: consider only the

magnitude of the Fourier coefficients.
If each set of Fourier descriptors undergoes these three
normalization steps, they can be compared in an invariant
and robust manner.

Upon computing the Fourier descriptors of the lesion’s
border using Fast Fourier Transform (FFT), a coarse repre-
sentation was reconstructed using only low-frequency com-
ponents. We found that using the lowest four frequency
components of a 1000-sampled border yielded good overall
structural representations of the lesion. A lesion with a
highly irregular border will have a larger perimeter than
the low-frequency representation of the same border. Thus
the perimeters of the low-frequency border and the original
border were compared to yield the feature:

fB2 =
|Plesion − Plow|

Plesion
(7)

where Plesion and Plow are the lengths of the perimeter of
the original and low-frequency border. Fig. 2 depicts the
lesion’s border (in red) and the reconstruction of that border
using the lowest four frequency components (in blue). Note
how the reconstructed border produces a smooth version of
the original border, with less high-frequency information.
Thus, by comparing the perimeters we are measuring how
“bumpy” the border is relative to its low-frequency, smooth
representation.

D. HLIF for Comparing Against Average Malignant Lesion

As indicated in the clinical description, malignant lesions
tend to have very distinct borders when compared with
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Fig. 2. Depiction of reconstructing the border of a lesion diagnosed
as malignant (lentigo maligna) melanoma using the lowest four Fourier
coefficients. Note how the low-frequency reconstruction captures the general
shape of the lesion, but not the high-frequency information that delineates
the border irregularities. In this example, fB

2 = 0.2623

benign cases. This can be viewed in the following way:
the average malignant lesion is structurally different than the
average benign lesion.

The Fourier descriptors are computed for each image in
the data set, and the sum of all coefficients is stored. Let C̄ =
{C̄(0), C̄(1), . . . , C̄(N − 1)} denote this set of coefficients.
We normalize C̄ with the same steps as described before:

1) Translation Invariance: C̄(0) = 0,
2) Scale Invariance: C̄(u) = C̄(u)

|C̄(1)| .
3) Rotation/Point-Order Invariance: Consider | ¯C(i)|.

The feature is then computed as the sum of squared differ-
ences between the magnitude of the complex-valued descrip-
tors and the average descriptors:

fB3 =

N−1∑
u=0

(|C(u)| − |C̄(u)|)2 (8)

where C is the set of normalized Fourier coefficients for
the image under analysis. The magnitude is used so that the
comparison is invariant to any phase-related phenomena (i.e.,
rotation and order of sequential points).

III. EXPERIMENTAL RESULTS

Our data set contains 206 images obtained with consumer-
level cameras: 69 images from the Dermatology Information
System [16] (43 malignant melanomas, 26 nevi), and 137
images from DermQuest [17] (76 malignant melanomas
and 61 nevi). Each image contains only a single lesion of
interest, which was manually segmented to create a binary
mask for differentiating pixels describing the lesion from
the surrounding skin. Each image underwent the illumination
invariance algorithm described by Cavalcanti et al. [14]. For
the proposed HLIFs, each image was rotated so that its major
axis (i.e., the axis that passes through the lesion’s centroid
and is in the direction of maximal variance) aligned with
the horizontal axis. This ensures rotation-invariant features.
The image was then uniformly scaled so that the bounding
box of the lesion fit inside a 200×200 rectangle. Due to
the small number of samples, leave-one-out cross-validation

(LOO CV) was used to compute the error of the classifier,
as well as sensitivity, specificity, and accuracy.

For clarity, we use the following terminology to denote
the different feature sets:
• FB

HLIF : feature set containing the three proposed
HLIFs describing border irregularity (see Section II).

• FC : feature set proposed by Cavalcanti et al. containing
52 features describing asymmetry, border irregularity,
colour variation, and differential structures [14].

• FCM : a modified version of FC without the
four inconsistent asymmetry features (FCM =
FC\{f8, . . . , f11} ⊂ FC).

• FT : the “total” superset containing FCM ∪ FBHLIF .
The rationale behind creating the set FCM is as fol-

lows. In Cavalcanti et al.’s paper, the asymmetry features
{f8, . . . , f11} measure the relative difference of the borders
separated by two orthogonal axes. However, the mathemat-
ical formulation does not constrain the relative sizes of the
borders (i.e., B1 may refer to either the larger or smaller
border). These features are inconsistent, and thus are omitted
during our analysis.

The extraction of each of these feature sets was imple-
mented in MATLAB. Upon extraction, we classified the
images using SVM without a kernel. The linear SVM model
was chosen to emphasize the linear separability of the data
in the feature space, as opposed to the efficiency of the
classifier. SVM is known as a classifier that is robust to noise
and does not tend to overfit training data. This is an important
trait due to the small size of our data set.

We evaluated the feature sets in the following way. The
LOO CV technique was used to generate the success metrics
(i.e., LOO CV error, sensitivity, specificity, and accuracy).
That is, for each data point the classifier was trained on
all Ni − 1 other data points, where Ni is the number of
images. Then, the omitted data point was used as the test
case. This was performed for each image, and identically for
each feature set. The classification results are summarized in
Table I.

A. Analysis of Results

As expected, FCM performs better than FC in all metrics.
We added our three proposed HLIFs to this feature set to
obtain the 51-dimensional superset FT .

Classification using FT attains the highest sensitivity
(90.76%), specificity (82.76%), and accuracy (87.38%) of
all the feature sets, and exhibits the lowest LOO CV error
(12.62%). In medical imaging, sensitivity is a crucial metric
because low sensitivity indicates that malignant cases have
been left undetected. This can lead to patient deaths. It is
therefore important to note that adding the border features
FBHLIF to the set FCM increases the sensitivity from 84.87%
to 90.76%, and is higher than the benchmark feature set
FC which has a sensitivity of 83.19%. The importance of
including HLIFs in a feature set is demonstrated by this
case. Although we are only adding three features to a 48-
dimensional feature set (i.e., we are only increasing the
feature space by 6%), all success metrics show non-trivial
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TABLE I
COMPARING CLASSIFICATION RESULTS OF DIFFERENT FEATURE SETS. LOO CV IS “LEAVE-ONE-OUT CROSS-VALIDATION”.

Feature set Description (see Section III) # features Sensitivity Specificity Accuracy LOO CV
Error

FC Cavalcanti et al. feature set [14] 52 83.19% 74.71% 79.61% 20.39%
FCM Modified FC (see Section III) 48 84.87% 75.86% 81.07% 18.93%
FT Combined FCM and FBHLIF 51 90.76% 82.76% 87.38% 12.62%

(a) False Negatives (b) False Positives

Fig. 3. Examples of images that were misclassified. The manually segmented lesion border has been superimposed on the image for visualization purposes.

improvements. This is due to the intuitive nature of HLIFs,
which describe human-observable phenomena.

Classification using FC attains lower results than reported
in [14]. This is because the authors grew their data set using
the Smoothed Bootstrap Resampling method, which does
not introduce as much variability as is seen in independent
clinical trials.

B. Sources of Error

Examples of misclassified images are given in Fig. 3.
Notice how most of the false negative cases have a fairly
regular border. The last image in the set has a very irregular
border. However, it is very saturated by white pixels due to
the flash, resulting in skewed colour features.

Most of the false positive cases have very irregular bor-
ders. The HLIFs for describing border irregularity are per-
forming as intended, but other characteristics of the lesion are
not being accounted for by the feature set. This emphasizes
the need for HLIFs to describe the other characteristics of
melanoma, namely asymmetry and colour patterns.

IV. CONCLUSION

In this paper we have proposed a set of HLIFs that describe
the amount of border irregularity about a lesion image
obtained using standard consumer-level cameras. HLIFs cap-
ture deterministic information about some human-observable
phenomenon. The experimental findings indicate that in-
corporating the small set of HLIFs to a set of low-level
features and classifying the data with a standard linear SVM
model yields very promising results. Future work includes
mapping the HLIF scores to intuitive labels for further user
comprehension. The data set will also be expanded and a
statistical analysis of the feature space will be conducted.
HLIFs to describe asymmetry and colour patterns will also
be designed, and this set will be evaluated as a feature space
for a diagnostic aid system.
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