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Abstract— In this study we introduce a method for detecting
myoclonic jerks during the night with video. Using video
instead of the traditional method of using EEG-electrodes,
permits patients to sleep without any attached sensors. This
improves the comfort during sleep and it makes long term
home monitoring possible. The algorithm for the detection of
the seizures is based on spatio-temporal interest points (STIPs),
proposed by Ivan Laptev, which is the state-of-the-art in action
recognition [8]. We applied this algorithm on a group of patients
suffering from myoclonic jerks. With an optimal parameter
setting this resulted in a sensitivity of over 75% and a PPV of
over 85%, on the patients’ combined data.

I. INTRODUCTION

About 25% of the patients suffering of epileptic seizures,

which is almost 1% of the world’s population, cannot be

controlled by either medication or surgery. The gold stan-

dard in epilepsy monitoring uses EEG-electrodes attached to

the scalp. However, these electrodes are difficult to attach,

hamper the patient’s sleep during the night, and therefore are

prohibiting long term home monitoring.

During the last decade researchers started to investigate

ways of detecting seizures with a motor component in a

less intrusive way by means of accelerometers or video.

Last year, the first detectors that are built in in a wrist-

watch were presented by BioLert (the EpiLert watch) and

Smart Monitor Company (the SmartWatch). Both systems

have recently been validated in clinical studies [11] [7],

mainly on generalized tonic-clonic patients. Jallon et al. [5],

Cuppens et al. [3] and Nijsen et al. [12] used multiple accel-

erometers attached to the extremities for seizure detection. A
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general conclusion from these papers is that large and intense

seizures (tonic-clonic, hypermotor) can be detected with a

high sensitivity and a low number of false positives, and that

smaller seizures (myoclonic jerks) can be detected but with a

higher number of false positives. The multi-modal approach

used by Conradsen et al. [2] gives better results on patients

with smaller seizures. Video based detection mainly focuses

on the usage of markers [10] [1] or other ways to track

limbs, like using colored pyjamas [4]. Karayiannis et al. [6]

didn’t use any markers, but the moving limbs of the patients

were clearly visible as they were monitored in the Neonatal

Intensive Care Unit (NICU) of the hospital. The best obtained

result had a sensitivity above 90% and a specificity above

85%, in patients with myoclonic and focal seizures.

Vision based human action recognition has been widely

studied, and various methods have been proposed [13]. Based

on representations, these approaches can be broadly catego-

rized into global representations and local representations.

In the former, the entire body or its articulated poses are

encoded in the model. In this work, because the body is

usually occluded and not fully observed, local representations

are used, where the observation is described as a collection

of local descriptors. In particular, we use space-time interest

point detectors and descriptors proposed by Ivan Laptev in

[9], which achieves state-of-the-art performance in action

recognition in video on real life actions. In that study,

different realistic actions from movies (such as kissing,

answering the phone and getting out of a car) are learned.

This method outperforms the other algorithms on the KTH

actions dataset [14] and reaches an accuracy of 91.8%.

The purpose of our study is the following, we want to keep

track of the number of seizures during the night in order

to have an objective measure for the neurologist. We want

to obtain this without interfering too much in the patient’s

environment, so without removing the blanket or attaching

markers.

II. METHOD

The general approach for classifying the nocturnal move-

ments in our database is based on the state-of-the-art method

proposed in [9]. In a first step, interest points in the video are

found. Afterwards, spatio-temporal features from these inter-

est points are extracted. Using a bag-of-features approach,

features are fed into a support vector machine (SVM) to

generate a classification model. Each part of this procedure

is explained in the following sections.
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Fig. 1. STIPs detected within one frame, represented by the circles.

A. Description of dataset

The data was recorded at the Pulderbos Rehabilitation

Center for Children and Youth in Zandhoven, Belgium. The

patients included in the dataset were between the age of 3

and 7 years, suffering from myoclonic jerks. These seizures

manifest themselves as short and jerky movement in one or

more of the limbs. The videos were recorded during the night

with a near infrared camera, with a resolution of 720 by 576

pixels at 25 frames per second. We processed data from 3

patients for a total of 6 nights.

B. Spatio-temporal interest points (STIP) and feature extrac-
tion

The Spatio-Temporal Interest Points detection, proposed

by Laptev [8] searches for corners in the 3 dimensional video

space (two spatial and one temporal dimension) based on the

Harris corner detection. We apply this method on our data

to find interest points. Figure 1 shows one frame of a video

with the detected interest points marked by circles. The size

of the circles represents the scale at which they are found.

The interest points are found using multiple spatio-

temporal scales. The appearance and the motion around

each interest point is then represented by the histograms

of oriented gradients (HoG) and the histograms of optical

flow (HoF). These are calculated from the neighborhood

around the interest points. This is done by dividing this

neighborhood in multiple cuboids in the spatial and temporal

space. From every cuboid a four bin HoG and five bin HoF

is calculated. However, in our study we only use the HoF

as these represent the motion. Indeed, the appearance of

the body part which is involved in the epileptic motion can

differ and it does not contribute to the distinction between

normal and epileptic movement. Furthermore, the appearance

is also influenced by the blanket, whereas the motion is not

as affected. As the neighborhood is divided into 18 cuboids,

this results in 90 HoF features.

The motions that occur during the myoclonic seizures are

often small. In the algorithm we can change the value of

some parameters to increase the number of detected STIPs.

A threshold T is used to eliminate interest points with

a low probability. When this threshold is lowered, more

noisier interest points are detected. A value k is used in the
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Fig. 2. STIPs of myoclonic and normal movements. The x-axis indicates
the frame number of the video sequence. The y-axis represents the number
of STIPs found in each frame. The boundaries indicate the beginning and
ending of each seizure (or normal movement). The parameter combination
generating the most STIPs is used here (T = 10−12, k = 5.10−5).

Harris corner detection to specify the maximum sharpness

of the detected corners. If this value is lowered, sharper

corners (but also more line-shaped rather than corner-shaped

points) will be detected. A third value we altered is the

window length, as the movement data is segmented in non-

overlapping windows. Each window is considered as an

example to be used in the training or test phase.

C. Classification

The HoF features derived from each interest point are used

to classify the windows into myoclonic or normal movement.

To do this, a bag-of-features approach is applied, as in [9],

on the features derived from the STIPs.

A subset of the data is used for the creation of the bag-

of-features vocabulary. We use 50 clusters in this study;

the cluster centers are determined by a k-means clustering

on a training set. All the STIPs within one window will

be assigned to their according cluster center, i.e. to the

cluster center at the smallest distance in the HoF feature

space. After this step, a histogram is built with each bin

representing one cluster center. This histogram is fed to a

support vector machine (SVM) for classification. The use

of this approach reduces the n 90-dimensional data points

(STIPs) in a window, to one 50-dimensional point for each

window, with n the number of STIPs in this window.

In the classification, two third of the data is used as

training set and one third as test set. The SVM used for the

classification has a radial basis function (RBF) kernel. We

optimized the SVM model using the total sum of the mis-

classifications as cost function. All the tests are performed

in a 15 fold randomization, randomizing the samples used

in the training and test set.

III. RESULTS

A. Results on global dataset

The first test is done on all the patients combined, and on

every patient individually. In this test, we used one night of

data for all patients.
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When we look at the results, we observe that the patient

specific approach outperforms the approach combining the

data of all patients. The results over all patients seem to

improve with an increasing window length. The mean sensi-

tivity over all settings of T and k increases from 11% to 37%

when increasing the window length from 1 to 10 seconds.

The best result is obtained using a 10 second window with

T = 10−10 and k = 5.10−5, reaching a sensitivity of 56%

and a PPV of 72%. The performance improves when we

consider the patients individually. For patient 2 (P2), an

increased window length from 1 to 10 seconds raises the

average sensitivity from 22% to 72% and the PPV from

45% to 77%. The parameter combination T = 10−12 and

k = 5.10−4 gives the best performance for most window

lengths. For the ten second window a sensitivity of 84% and

a PPV of 93% is obtained. However, for patients 3 (P3) and

1 (P1) no usable results could be obtained for half of the

parameter combinations, as there were not enough seizures

containing STIPs to train and test the classification model

and obtain the performance results. Even when using the

combination with the lowest threshold, some seizures had

only a few or even no STIPs, which is also visible in figure 2.

For example, seizure 8 of P1 has no STIPs during the seizure.

Of course it is hard or even impossible for the algorithm to

correctly classify such small motions. Inspecting the video

data, we could see that there were several seizures with a

low intensity. Also, for some patients, myoclonic seizures

manifested themselves during other, non-epileptic movement.

B. Results on subset

To overcome the problems stated in the previous section,

we validated the algorithm again on a subset of the data.

Indeed, for the approach we use it is necessary that there

is enough similarity within the seizure class. Furthermore

some normal movement events contain jerk-like movement.

To have an idea if this algorithm could work, we selected

a subset of epileptic and non-epileptic data according to the

following inclusion criteria:

• the jerks should be well visible in the video (thus

resulting in a sufficient amount of STIPs);

• the jerks should be isolated in time (no influence of

normal movement or other seizures);

• the normal sequences should not contain jerks.

With these criteria we composed a subset of data from

3 patients, containing in total 14 myoclonic jerks and 26

normal movements. The average length of each sequence

is 40 frames. For P2, we obtained 7 seizures, and for P1,

we obtained 6 seizures. This permits us to do training and

testing across both patients, by training the model on one

patient and evaluating it on the other, to verify the models

genericity. For P3, we obtained one seizure. This one seizure

is only used when combining the data from all patients.

In figure 3, the results are shown for the subset of the

patients with myoclonic seizures. The results shown are

averaged out over the different values for T and k, and

show the influence of the window length. For all patients

individually and for the patients combined, the ten second
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Fig. 3. The performance expressed in sensitivity and Positive Predictive
Value on the subset of the data. The given performances are averaged out
over the values of T and k, and show the influence of the window length.
The window length is shown next to each data point, the marker shape
indicates the corresponding dataset.
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Fig. 4. The histograms for WiL (left) and VHJ (right). The black and
the gray curves are the histograms of the epileptic and normal movements,
respectively. The bins that have an increased value for both patients are
highlighted and labeled. It is also visible that in general the number of
STIPs for the movements of VHJ is lower than for WiL.

window gives the best results. For the patients combined,

the performance increases from an average sensitivity of 60%

to 74% and a PPV of 69% to 84%. The best performance

reaches a sensitivity of 77% and a PPV of 87%. For P2 this

is an increase from 61% to 80% and from 62% to 87%,

respectively. For P1 the sensitivity increases from 25% to

49% but the PPV stays the same (a little decrease) from 65%

to 64%. But the results are more spread out with respect

to the different threshold combinations. The most optimal

combination for P2 is a window length of 5 or 10 seconds

with T = 10−12 and k = 5.10−5, so the combination with

the highest number of STIPs. This resulted in a sensitivity

of 97% and a PPV of 100%. The best result for P1 is a

sensitivity of 70% and a PPV of 75% obtained for a window

length of 10 seconds with T = 10−9 and k = 5.10−4. We

see in this patient that the performance increases for this 10

second window with a decreasing value for T .

Figure 4 shows the 50 bins for the movements in patient P2

and P1, as explained in section II-C. The histograms shown

in black represent the myoclonic jerks, the ones in gray are

normal movement. The histograms here are not normalized,

so the y-axis shows the absolute number of STIPs that are
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assigned to the different clusters (bins). We can observe

that there is a similarity in the bins (e.g. bin 20, 40 and

46) with the highest number of STIPs assigned to, for the

epileptic movement in both patients. The histograms shown

here are generated using a window length of 10 seconds, a

threshold of 10−10 and a k-parameter of 5.10−4. Because

there is similarity in the histograms, it means that it should

be possible to train the classification model on one patient,

and test it on the other one. We have tested this for all the

different parameter combinations, using all the data from

both patients (and thus without a randomization).

When inspecting the performance we notice that there is

a large spread in the results regarding the parameter com-

bination. When averaging out the results for each window

length, we also can see here that a larger window length

increases the performance. When we train the classification

model on P2 and test on P1, the average sensitivity increases

from 31% to 56% from a 1 second window to a 10 second

window, whereas the PPV stays the same at 78%. The other

way around we see an increase of the sensitivity and PPV

from 50% to 64% and from 58% to 80%, respectively. In the

second test (training on P1 and testing on P2) we observe

that using a threshold of 10−12 and a k-parameter of 5.10−4

gives the best performance, and for a 10 second window it

even reaches a sensitivity and PPV of 100%.

IV. DISCUSSION

This study shows that we are able to detect the jerky

movement of myoclonic seizures. The performance increases

with the window length. Also, the patient specific approach

gives better results than the group specific approach.

The influence of increasing or decreasing T or k is not

always consistent. The results often differ when using a dif-

ferent parameter combination. Adding more STIPs (lowering

T or k) can increase the number of characteristic features.

But lowering the thresholds too much increases also the noisy

features. Depending on how intense the motion is, the ideal

value differs. However, we can conclude that the window of

10 seconds gives the best results in any case. And when we

apply this approach on a larger scale, we assume that we get

more conclusive results for an optimal T and k, which will

allow us to choose a fixed value for both.

The results we get from the cross training and testing on

two patients are encouraging, although the result depends

strongly on which combination of parameters is used.

The calculation of the STIPs and the derived features

is computationally intensive. Real-time processing is not

feasible for the moment. However, if we could downscale

the algorithm and tune it for our specific application, an

increase in speed may be obtained. Furthermore, the use of

the windowing limits the real-time detection to the length of

the chosen window. If we e.g. use a window of 5 seconds,

since all the features can only be calculated after completion

of the recording of the corresponding epoch.

A downside of video detection in general in this setup

is that the video cannot record subtle movement that occur

under the blankets. For these type of movements, other

modalities have to be used which may include accelerome-

ters, thermal infrared cameras (if the blankets don’t mask the

heat too much), or depth cameras.
As future work we want to investigate the combination

of accelerometer and video data to optimize the results, or

even use other modalities. However attaching more sensors

will reduce the benefit of the non-contacting video sensor.

Another possible idea to reconstruct movement under the

blankets is to model the patient’s posture (e.g. if we know

the orientation of the head, we can estimate how the patient

is positioned under the blankets).

V. CONCLUSIONS

The application of the STIP method on the myoclonic data

gives promising initial results. The best obtained result over

all the patients combined reaches a sensitivity of 77% and a

PPV of 87%. We can conclude that a longer window gives

better results in detecting seizures. However if the seizures

are too subtle, the method seems not able to detect them.
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