
  

  

Abstract—Quantitative measures of breast morphology can 

help a breast cancer survivor to understand outcomes of 

reconstructive surgeries. One bottleneck of quantifying breast 

morphology is that there are only a few reliable automation 

algorithms for detecting the breast contour. This study 

proposes a novel approach for detecting the breast contour, 

which is based on a parametric active contour model. In 

addition to employing the traditional parametric active contour 

model, the proposed approach enforces a mathematical shape 

constraint based on the catenary curve, which has been 

previously shown to capture the overall shape of the breast 

contour reliably [1]. The mathematical shape constraint 

regulates the evolution of the active contour and helps the 

contour evolve towards the breast, while minimizing the 

undesired effects of other structures such as, the nipple/areola 

and scars. The efficacy of the proposed approach was evaluated 

on anterior posterior photographs of women who underwent or 

were scheduled for breast reconstruction surgery including 

autologous tissue reconstruction. The proposed algorithm 

shows promising results for detecting the breast contour. 

I. INTRODUCTION 

Due to improvements in early breast cancer detection 
techniques and treatments, the mortality rate of breast cancer 
has decreased significantly since 1990 [2-4]. Consequently, 
there is increasing emphasis on restoring breast cancer 
survivors' quality of life. Breast reconstruction surgical 
procedures help surviving cancer patients psychologically 
adjust by restoring their breast(s). Breast reconstruction is not 
a single step procedure; there are multiple options available 
for the patient to choose from and they usually consist of 
multiple surgeries and revisions to achieve a desirable 
outcome. Although patients’ surgeons help them with these 
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decisions, breast cancer survivors are often still overwhelmed 
by uncertainties during the process of selecting 
reconstruction options. Quantitative measures of breast 
morphology may help breast cancer survivors to elucidate 
such uncertainties by providing them a systematic 
methodology to understand outcomes of reconstructive 
options. 

There are many previous studies that have introduced 
measures for quantifying breast morphology, e.g., [1, 5-9]. 
Delineating the breast contour is an important precursor for 
computing many measures of breast morphology. One 
bottleneck in quantifying breast morphology is that there are 
only a few reliable algorithms for detecting breast contour. 
To the best our knowledge, only one research group has 
introduced an algorithm for automatically tracing the breast 
contour. In their work [10], Dijkstra’s shortest path algorithm 
was applied on the gradient map of patients' clinical 
photographs with shape priors using parabola, ellipse 
(parametric priors), or previously outlined breast contour 
examples (non-parametric priors) on the path. Although their 
algorithm showed acceptable results on a dataset comprised 
of clinical photographs of 120 patients who underwent breast 
conservation therapy, the algorithm has two key limitations 
for our application: 1) any strong gradient changes around the 
breast contour such as the nipple/areola or scars due to 
surgery can cause the algorithm to fail since it is based solely 
on the image gradient, and 2) it has not been validated on 
clinical photographs of patients who underwent breast 
reconstruction. 

In this study, we propose a novel approach for detecting 
the breast contour, which is based on a parametric active 
contour model. Active contours or snakes have been used for 
many computer vision and image processing tasks such as 
segmentation or tracking objects since it was first proposed 
by Kass et al [11]. An active contour is a parametric curve 
that deforms to the object of interest by minimizing an energy 
functional with constraints on the curve evolution. In a 
traditional active contour model, the energy functional is 
usually comprised of internal and external force terms. The 
internal force terms help the contour retain its smoothness 
and tautness, while the external force influences the contour 
to deform towards the object of interest. The edge map of an 
image is a popular choice for the external force. However, the 
use of an edge map alone as the external force does not 
suffice when it comes to detecting the breast contour since 
the presence of other structures, such as nipple/areola region 
and scars can contribute to external force, thereby hindering 
the accurate delineation of the breast contour. To overcome 
this problem, the traditional active contour model was 
augmented with a mathematical shape constraint that was 
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based on the prior knowledge of the breast morphology. This 
approach is similar to that introduced in the work of Ray et al. 
[12] for tracking Leukocytes in Vivo. In their study, the prior 
knowledge of the shape of Leukocytes, which are 
approximately elliptic, was incorporated as an additional 
external force in the active contour framework. In this study, 
we used the catenary curve as the shape constraint for the 
active contour model. The catenary has been previously 
shown to capture the overall curvature of breast contour 
reliably [1]. The mathematical shape constraint regulates the 
evolution of the active contour and helps the contour to 
evolve towards the breast contour. We describe the proposed 
approach next. 

II. PROPOSED APPROACH 

A. Shape Constrained Parametric Active Contour 

An active contour is a parametric curve 

v(s) = [x(s), y(s)]T ,s![0,1]
 
that evolves to minimize the 

following energy functional 
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where vs(s) and vss(s) are the first and second derivatives of 
v(s) with respect to s, respectively, and w1 and w2 are 
associated weights for the derivatives to control the 
continuity and curvature (tautness) of the contour. Eext is the 
external energy, which represents the external forces that 
influence the curve evolution. 

In the proposed approach, an image with oriented 
structures enhanced was used for Eext, since the breast 
contour manifests as a strong, oriented structure in the image. 
To obtain the orientation-enhanced image, we employed a 
quadrature pair comprised of the steerable fourth derivative 
of a 2D gaussian and its Hilbert transform, respectively [13]. 
The orientation-enhanced image was embedded within the 
Vector Field Convolution (VFC) framework [14] to make the 
external energy term provide a large capture range and also 
make it robust to noise. 

To incorporate prior knowledge of the breast contour into 
our model, we introduce a shape constraint 
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Equation (2) represents the rotated version of a catenary 
curve, which captures the overall curvature of the breast 
contour reliably [1]. In (2), b and c are the offset of the x-axis 

and y-axis, respectively, and !  is the ratio of the tension to 
the weight applied to each point on the curve. The rotation 

parameter, ", captures the angle between the breast contour 
and the imaginary horizontal line. The term 2(s-1) was 
introduced to make the catenary curve symmetric about the 

s = 0  line. We used the parametric representation of the 

catenary curve since the parameters in (2) can be used to 

quantify the breast morphology (e.g., !  is the quantitative 
measure of overall breast curvature [1]). We augmented the 
shape constraint with the balloon inflation force Fballoon 
introduced in the balloon model [15], which is simply the 
unit normal vector of each vertex in the active contour. This 
was done to prevent the contour from evolving towards a 
trivial local optima such as collapsing to a point. 

The resulting Euler-Lagrange equation to minimize the 
energy functional (1) is given as 

( ) ( ) ( )( )1 2
0,ss ssss ext shape balloonw v s w v s E v s F F! "# #$ # + =  (3) 

which can be represented as  

0,
int ext
F F+ =                 (4) 

where ( ) ( )int 1 2ss ssss
F w v s w v s= ! is the internal force needed 

to retain the continuity and tautness of the contour, and 

F
ext
= !"E

ext
v s( )( )!!Fshape +!Fballoon ,  is the external force 

needed to attract the contour to the breast contour, where 

# and $ are weights to control the effect of the shape prior 
and the inflation force. 

To solve (3), the contour v(s) is considered as a function 
of time t. The steady state solution of (3) can be found using 
the gradient descent equation as follows 

!v s,t( )
!t

= F
int
v(s,t)( )+ Fext v(s,t)( ).         (5) 

The initial contour for (5) is defined as 

0 0 0 0( ,0) ( , , , , )
c

v s v s b c! "=  where !0, b0, c0 and "0 are the 

initial values for the parameters in (2). This initial open 

contour was used as an approximation of the breast contour. 

B. Numerical Implementation 

Let S
p
= w

1
,w

2
,!,"!" #$  denote the static parameter set - the 

parameters that are held constant during each iteration of the 

algorithm. The values of the parameters in S
p

 were 

empirically set to 0.05,0.15,0.1,0.2!" #$ . Let D
p
= ! ,b,c,!!" #$  

denote the active catenary parameter set, which are updated 

in each iteration. We set the initial value of [!,"] to [70 20] 
for the patient’s right breast contour and to [70 -20] for the 
patient’s left breast contour. The initial values for [b, c] were 
computed from the location of Anterior Axilliary Point 
(AAP), which is defined as a point in the top portion of the 
anterior axillary fat pad, which starts from the very top of 
anterior axillary fat pad (AAPupper) to the junction of the 
anterior axillary fad pad and the breast (AAPlower) (Fig. 1.A). 
The initial values [b, c] were set to make one end of the 
active contour to be located at the AAP. We selected the 
AAP for the initialization of [b, c] because of the following 
reasons: 1) it is located close to the breast contour and some 
AAPs are the end point of the breast contour, 2) unlike other 
fiducial points, such as the nipple or areola, its location is not 
as affected by the breast reconstruction or oncologic surgery. 
For this study, the first author (J.L.) manually located the 
AAPs on all patients’ photographs. For most cases, the AAP 
is located at the AAPupper. For patients with severely ptotic 
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Figure 1.  A: Top 20% and bottom 40% of the image were masked out since those regionsare not expected to contain the patient’s breasts given the 

standard pose used. Anterior Axillary Points (AAP) were manually located on the image. The AAP is defined as a point in the top portion of the anterior 

axillary fat pad, which starts from the very top of anterior axillary fat pad (AAPupper) to the junction of the anterior axillary fad pad and the breast (AAPlower) 

B: The result of the traditional balloon active contour algorithm without the catenary shape constraint. Without the shape constraint, the active contour is 

unable to delinearate the breast contour properly. C-D: Examples of success cases. E-F:Examples of failure cases. In E, the proposed algorithmfailed due 

to the failure of the nipple detection method. In F, this failure was due to the weak steerable filter response of the breast contour. Since the shadow under 
the breast contour creates a stronger filter response, the active contour is attracted to the edge of shadow, not the edge of the breast contour. 

breasts, the location of the AAP was moved close to the 
AAPlower. If desired, this step could be easily automated as 
shown by Cardoso et al. [10]. 

The pseudocode of the algorithm is: 

• WHILE v i,t( )! v i,t !1( )
i

" < 0.1  

• Update v i,t( )  by solving (5) 

• Update !,b,c,"!
"

#
$  from v i,t( ) by solving (2) in least 

square sense [1] 

• END 

After the algorithm terminates its iterations with the initial 
static parameter set, the algorithm is applied again with a 

lower weight on the shape constraint, i.e., smaller # value, to 
make the active contour capture the local variation of breast 

contour better. At this step, we set # value as 0.05 and the 
other static parameters remain unchanged. 

III. EXPERIMENTAL EVALUATION 

A. Dataset 

The study population for this paper consists of women 
aged 21 or older who underwent or were scheduled for breast 
reconstruction surgery from January 1, 2010 to December 31, 
2011 at The University of Texas MD Anderson Cancer 
Center. A Canon EOS REBEL T1i (Canon, USA) was used 
to obtain anterior posterior (AP) images of 46 patients (79 
breasts). Of the 79 breasts, 56 breasts were either healthy or 
untreated breasts and 23 breasts were transverse rectus 
abdominis myocutaneous (TRAM) reconstructed breasts. 

All photographs in the dataset were first rescaled to the 
size of 1188 x 792 pixels in order to increase the speed of the 
proposed algorithm without compromising its performance. 
Then, the top 20% and bottom 40% of the patient in the 
image, which are not expected to contain the patient’s breasts 
given the standardized posed used, were masked out 
automatically to minimize the changes of false positive 
detection. These masked out regions were verified with the 
randomly selected subset of the dataset (N = 6). 

The nipple/areola is one of the most salient structures of 
the breast, which can distract most gradient-based breast 
contour detection algorithms. In order to minimize possible 
false detection, we automatically located the nipple/areola 
region and created a patch, which is used for masking the 
nipple/areola location in the external force map. We 
employed the method described in [16] to locate the 
nipple/areola region in the photograph. The Q channel image 
of the YIQ color space of photographs is first thresholded 
using the 40% of the maximum Q channel intensity of the 
image. Then, the resulting binary image is dilated and eroded 
using a ‘disk’ structural element with radius of 3 pixels, to 
find the nipple/areola region. After that, the preprocessed 
image is converted to grayscale before subsequent processing 
to detect the breast contour. 

B. Results 

Fig. 1.C and Fig. 1.B show the results of the proposed 
algorithm with and without the shape constraint, respectively, 
to detect the contours of untreated and TRAM reconstructed 
breast. This figure demonstrates that the shape constraint 
based on the catenary curve helps the active contour to 
maintain its form close to the typical shape of the breast 
contour. Specifically, the shape constraint based on the 
catenary curve restricts two ends of the active contour to 
deviate from the breast contour. Moreover, it ensures the 
middle of the active contour to have smooth curvature, which 
is typically observed from the actual breast contour.     

Two non-clinical observers (J.L. and G.S.M.) examined 
the outcomes of the proposed algorithm and made a choice 
whether the outcome was successful or not. The cases for 
which both observers agreed that the contour was detected 
correctly were treated as successes. Overall, the proposed 
algorithm accurately detected the healthy or untreated breasts 
(84%) and TRAM reconstructed breasts (91%). Most failures 
were due to the weak steerable filter response of the breast 
contour. Since the lower breast contour is not obvious for 
those cases (Fig. 1.F) its filter response is not strong enough 
to attract the active contour. Some other failures (Fig. 1.E) 
were due to the failure of the nipple/areola detection. One 
failure was due to moles located close to breast contour, 
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which distracts the active contour to converge to the breast 
contour. 

For the successful cases (i.e., the case on which both 
observers felt that the contour had been accurately located), 
we evaluated the accuracy of the proposed algorithm. For this, 
the first author (J.L.) manually traced the breast contour of 
the success cases using a stylus and a tablet computer, prior 
to applying the proposed algorithm to the images. Table I 
shows the accuracy of the proposed algorithm with respect to 
the average distance (error) between the detected breast 
contour and the manually traced contour. The average errors 
across the images were less than 9.4 pixels (approximately 
0.67 cm). The error was similar for untreated and TRAM 
reconstructed breasts. The biggest contribution to the error of 
the proposed algorithm was from the end point of the 
automated contour. However, the effect of such an error 
arising from the end-points of the contour is insignificant 
when it comes to quantitatively measuring breast morphology 
factors such as curvature [1], since these factors employ the 
middle portion of the breast contour.  

While it is not possible to directly compare our study to 
prior studies on breast contour detection since the algorithms 
were deployed on different datasets, we provide a brief 
discussion for reference. On a data set of women who 
underwent breast conservation therapy, Cardoso et al. [10] 
presented an algorithm that  located the breast contour with 
error of around 0.3 cm.  

TABLE I.  QUANTIATIVE EVALUATION 

Avg. 

Error 

Healthy or Untreated TRAM reconstructed 

Mean Std [Min Max] Mean Std [Min Max] 

in 

pixel 
9.4 3.9 [4.9 24.4] 8 2.2 [4.8 12.9] 

in cm 0.67 0.28 [0.35 1.74] 0.58 0.24 [0.34 0.92] 

IV. CONCLUSION 

The proposed algorithm using active contour with the 

shape constraint shows promising results for detecting the 

breast contour of untreated breast and TRAM reconstructed 

breasts. In future work, we will validate the algorithm with 

the dataset with larger sample size of healthy and TRAM 

reconstructed breasts as well as additional types of 

reconstruction, e.g., tissue expander / implant. 
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