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Automated extraction of nested sulcus features
from human brain MRI data

Forrest Sheng Bao!, Joachim Giard?2, Jason Tourville? and Arno Klein*

Abstract—Extracting objects related to a fold in the cerebral
cortex (“sulcus features’) from human brain magnetic resonance
imaging data has applications in morphometry, landmark-based
registration, and anatomical labeling. In prior work, sulcus
features such as surfaces, fundi and pits have been extracted
separately. Here we define and extract nested sulcus features
in a hierarchical manner from a cortical surface mesh having
curvature or depth values. Our experimental results show that the
nested features are comparable to features extracted separately
using other methods, and that they are consistent across subjects
and with manual label boundaries. Our open source feature
extraction software will be made freely available as part of the
Mindboggle project (http://www.mindboggle.info).

I. INTRODUCTION

The human cerebral cortex is a very complex folded struc-
ture. The infolding or concave portions of the cortical surface
are called sulci that separate intervening ridges called gyri.
Morphometric differences in these sulci across individuals
might help to classify certain neuropsychiatric illnesses, in-
cluding schizophrenia [1], Alzheimer’s disease (AD) and mild
cognitive impairment (MCI) [2], depression [3], and bipolar
disorder [4]. Sulci and individual sulcus features can be
derived from magnetic resonance images (MRI), making it
possible to do non-invasive morphometry in humans. We use
these features as landmarks in landmark-driven registration for
voxel-wise comparison across brain images and as topograph-
ical boundaries to delimit anatomical regions in atlas-based
labeling for region-based comparison across brain images [5]—
[7].

The sulcus features we will focus on in this article is the
fundus (pl. fundi), a curve that traverses the deepest path along
the bottom of a sulcus, as well as dips along the fundus that
we will call fundus “pits.”

Previous studies focus on extracting a single type of sulcus
feature, whether it is a fundus [8]-[10], pits [2], [11], [12],
watershed segmentations [13], [14], brain hull curves [15],
[16], or medial surfaces [17]. Many researchers represent the
cortical surface as a mesh, and assign values to the vertexes
of the mesh (a “map”) that can provide more morphological
and anatomical information for better feature extraction than
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from a 3-D volume. Different maps have been used to ex-
tract individual features. For example, Kao et al. [9] extract
fundi using geodesic depth, Li et al. [8] extract fundi using
curvature, and Im et al. [2] extract pits from a FreeSurfer [18]
convexity map (an approximation of depth based on distances
that vertexes move when a cortical mesh is inflated). The
BrainVISA software [17] extracts the medial surface in a 3-
D image volume from within the space of a sulcus fold, and
approximates a fundus as the bottom of a medial surface.

In this article, we explore a new way to extract sulcus
features. We do not define features independently but instead
hierarchically, resulting in a set of nested features: fundus pits
lie on fundus curves while fundus curves lie at the bottom of
sulcus surfaces. Sulcus surfaces are extracted first, then pits
and finally fundi connected by the pits, as shown in Fig. 1.

Compute depth map

Extract sulci

4

Extract fundus pits

4

Extract fundi
Fig. 1: Hierarchical pipeline to extract nested features

There are several advantages to representing features as
nested hierarchies. A set of related features will be more dis-
tinctive than each type of feature alone, raising the possibility
of distinguishing individuals or groups based on morphometry,
and improving feature matching and landmark-based registra-
tion across brains. Nesting features is also a more efficient
way of representing properties (curvature, depth, etc.) of each
feature. Nesting features will help us in the longer term to test
various hypotheses that we otherwise could not test, such as:
(1) the position of a feature in its nested hierarchy will help to
predict how variable the structure is across individuals, and (2)
when differences related to a disorder are detectable between
two groups for a given structure, the structure’s position in
its nested hierarchy can predict how subtle or pathological the
condition is.

We present a nested feature extraction pipeline that can
extract features using different maps, although we choose to
use a “travel depth” map based on an accurate measure of
depth [19], [20]. To evaluate our feature extraction pipeline,
we visually and numerically compare features that we extract
with those extracted by other methods and with manual label
boundaries drawn by expert anatomists. In this study, we
have found that our nested features are comparable to those
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extracted separately by existing approaches, and our results are
consistent across subjects and with manual label boundaries.
The rest of the paper is organized as follows: Section II
provides definitions and algorithms to hierarchically extract
nested features, Section III evaluates the resulting features
visually and numerically, and Section IV concludes the paper.

II. METHODS

Our nested feature extraction pipeline takes as input a
mesh of vertexes and edges representing the cortical surface,
which may be generated from a T1-weighted MRI by different
software packages such as FreeSurfer [18], Caret [21], and
BrainVISA [17]. At least one map on the mesh is needed
to continue the pipeline. A map may come from a software
application other than the one that computes the mesh. Our
pipeline can extract different features using different maps, for
example sulci with a curvature map and pits with a travel depth
map. In this article, we use an external gray matter (triangular)
surface mesh from FreeSurfer and compute a travel depth map
for each hemisphere in each subject. We also use FreeSurfer
to compute curvature and convexity maps in our evaluation
to compare our results with other methods that rely on these
maps.

A. Travel Depth Map

From a point on a surface, travel depth is defined as the
shortest distance from that point to a reference surface along
a path that does not run through the interior of the surface [20].
We have recently adapted this measure of depth for use with
brain surfaces [19]. We compute the reference surface, which
must closely wrap over the cortical surface, by performing a
morphological closing operation on the cortical surface with a
radius of Smm. We then normalize depth values so that they
lie between O and 1 (Fig. 2 and Fig. 3).

B. Sulcus Extraction

We separate sulci and gyri by thresholding a given map,
in our case the travel depth map. A proper reference surface
for computing a travel depth map should provide a natural
separation between sulci and gyri: portions of the mesh that
are also on the reference surface have zero depth and are gyri,
and the remaining portions are sulci. Thus, the threshold is O.
Due to precision errors, in this article we consider any vertex
deeper than 0.2 to be a sulcus vertex.

C. Pit Extraction

We define pits as sulcus vertexes that are local depth max-
ima (i.e., no neighbor deeper than itself). Our pit extraction
algorithm sorts sulcus vertexes by their depth values to quickly
pull out a set of vertexes deeper than any given vertex, then
checks whether any neighbor of the given vertex is in the set.
If not, the given vertex is considered a pit.

For every sulcus, we run Algorithm 1 to extract pits. At first,
vertexes are sorted by their depth values and stored in a stack
S with greatest value on top and smallest value at bottom.
Two empty arrays/lists are initialized, Popped to store vertexes

depth
ol 1 i
Fig. 2: Normalized travel depth on lateral side (left column)
and medial side (right column) of an inflated (top row) and
uninflated (bottom row) left cerebrum.

Fig. 3: Sulci on lateral side (left) and medial side (right) of a
left cerebrum, colored by normalized travel depth (increasing
depth from blue to red).

popped (removed) from S, and Pits to store pits. Then we
start popping the stack S. For every vertex v, we add v into
Popped. If v has no neighbor in Popped, we add v into Pits.
The algorithm stops when stack S is empty.

D. Fundus Extraction from Pits

We define a fundus as a set of mesh edges that connect all
pits within one sulcus while maximizing the total depth along
its path. In other words, a fundus is a minimum spanning tree
(MST) with respect to negative depth (thus maximizing depth)
of all fundus pits within the same sulcus. For each sulcus, we
have only one fundus. We use Prim’s algorithm to construct an
MST [22]. Since we want to maximize the depth on the tree,
we define the weight of every edge as the negative average of
the depth values of its two terminal vertexes.

Because the complexity of constructing an MST is
O(E1gV) where E is the number of edges and V is the
number of vertexes, to speed up the computation we first
decimate the original mesh by Algorithm 2. For every vertex
that is not a pit, we remove it with a probability of 0.8 (T'hr
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Algorithm 1: Pit extraction in a surface mesh (e.g., within
a sulcus)

Input: a graph (V, E) where V are vertexes and E are
edges, and depth values of all vertexes in V

Output: vertexes considered as pits
Initialize two empty lists Popped and Pits
S := vertexes sorted by depth value
while S is not empty do

v = S.pop()

Add v into Popped

if v has no neighbor in Popped then

| Add v into Pits

end
end
return Pits
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in Algorithm 2) to decrease computation time. To ensure the
connectivity of the sulcus, we do not remove a vertex that has
a neighbor which has been removed, as illustrated in Fig. 4.

Algorithm 2: Mesh decimation

Input: a graph (V, E) where V' are vertexes and E are
edges, and a threshold Thr in [0, 1]
Output: a graph (V', E’)
1 Initialize an empty list Removed
2 V=V
3 E=F
4 foreach vertex v in V do

5 Rnd:= a randomly generated number in [0, 1]

6 if v is a pit then continue

7 else if v has a neighbor in Removed then continue
8 else if Rnd > Thr then continue

9 else

10 remove v from V'

11 remove all edges in E’ connected to v

12 Add v into Removed

13 end

14 end

—

s return (V' E')

The last step for fundus extraction is MST pruning. The
MST constructed above connects all vertexes on a decimated
mesh, including non-pit vertexes. The purpose of MST pruning
is to remove all subtrees that have no pits. A vertex of degree
equal to 1 is a terminal vertex and degree greater than 2
is called a branching vertex. For every terminal vertex, we
remove edges from it until a pit or a branching node is reached.
The algorithm ends when all terminal vertexes are pits. Fig. 5
shows an example of how a subtree with two branches are
removed.

III. EVALUATION

Since our nested feature extraction pipeline works with
various maps, including curvature and convexity maps used by

Fig. 4: Mesh decimation. A portion of the original mesh is
on the left and the decimated result is on the right. Solid dots
are vertexes chosen randomly to be removed. Dashed lines are

edges to be removed. To keep connectivity, neighbors of solid
dots are kept.

Fig. 5: MST pruning. Black edges represent MST paths (vi-
sually truncated at the red dashed lines). The original subtree
has two terminal vertexes a and b, branching vertex ¢ and a
pit d. a is chosen first and edges a — e and e — ¢ are removed
until branching vertex c is reached. After that ¢ is no longer
a branching vertex. Then path b — f — g — ¢ — d is removed
until pit d is reached. In the end, d becomes a new terminal
vertex.

other groups, we compared our feature extraction with theirs
on the same maps. We used 12 brains of healthy subjects in
the CUMCI12 dataset (http://www.mindboggle.info/data/) [7].
For our visual comparison, we used a variety of maps to
extract features to show the flexibility of our pipeline. Due to
page limitations, we are not able to show all results obtained
using different maps, but they are similar. We then numerically
compare fundi extracted by different approaches.
The approaches under comparison (Kao et al.’s software was
not available):
o BrainVISA [17], to extract ribbons and fundi from a 3-D
volume
o Im et al. [2], to extract sulci and pits from a convexity
map on an external cortical surface
o Li et al. [8], to extract fundi from a curvature map on a
gray/white matter surface
o Our nested approach, to extract sulci, fundi and pits from
various maps on an external cortical surface

A. Visual Comparison

Fig. 6 shows the three nested features extracted by our
pipeline, namely sulci, fundi and pits, from a mean curvature
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map.

Fig. 6: Sulci (yellow-blue), fundi (magenta), and pits (green)
from an uninflated (top) and inflated (bottom) left cortical
surface.

Fig. 7 provides a gradient transparent view of sulci and pits
as a face validity check to make sure the locations of our pits
(and fundi that connect them) are at the bottom of sulci.

Fig. 8: Our fundi (magenta, from mean curvature), Li et al.’s
fundi (blue), and BrainVISA’s fundi (green) on a white matter
surface in a lateral view of a left hemisphere (left) and top
view of the brain (right).

Fig. 9 shows fundi extracted by our pipeline using 3 differ-
ent maps — travel depth, convexity and curvature. These fundi
are shown overlaid atop manual labels. The main branches of
the fundi from all three maps are closely aligned with manual
label boundaries.

(@) (b)

Fig. 7: Sulci, fundi (black curves) and pits (blue dots) from a
left cortical surface (medial view). Color indicates convexity,
and transparency increases monotonically with convexity to
enhance areas of high convexity.

Fig. 8 overlays fundi extracted by three different methods.
Our fundi are very similar to Li et al’s while BrainVISA’s
fundi overlap in many places with those of the other two
methods. We used a curvature map to extract our fundi because
it is the same map that Li et al. use.

Fig. 9: Manual labels and fundi extracted from (a) travel
depth, (b) convexity, and (c) curvature maps on an inflated left
hemisphere. (Colors indicate different anatomical regions.)

B. Numerical Comparison

We used the CUMCI12’s 12 subject images and manual
labels for our numerical comparison. In the following two
tests, we compare features extracted by different approaches.

Test 1: Is a given type of feature consistent across subjects?
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We measured Hausdorff distance between fundus curves in co-
registered subjects.

Test 2: Are features consistent with label boundaries?
We measured Hausdorff distance between fundus curves and
manual label borders.

Only fundus results are reported for both tests, since pits
results are biased in favor of the number of pits generated,
sulci are defined differently and are computed on different
surfaces, and medial surfaces are currently generated only
by BrainVISA. The results are very similar across fundus
extraction algorithms according to Table I. To minimize the
error from using different maps, we used the same curvature
map as Li et al. for our method.

TABLE I: Fundus consistency (mean+SD)

This paper BrainVISA Li et al.
Test 1 245+1.64mm 2.16+1.57 mm 2.47 + 1.66 mm
Test2 4.34+£3.65mm 4.48+3.28 mm 3.47 + 2.37 mm

IV. CONCLUSION

In this paper, we present and evaluate an automated, nested
feature extraction pipeline. This pipeline can make use of
a variety of measures on a cortical surface mesh, including
curvature, convexity, and our own travel depth. Experimental
results show that our nested features are comparable to in-
dividual features extracted separately by other algorithms as
measured by their consistency across subjects, and consistency
with manual label boundaries. In future work, we will prune
and smooth fundi extracted from our travel depth map, and
constrain sulcus medial surface extraction to “grow” from our
fundi. The software implementation of our feature extraction
algorithms will be released as part of the Mindboggle project
at http://www.mindboggle.info
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