
  

 

  

 

Abstract—Correct annotation and identification of salient 

regions in Kidney biopsy images can provide an estimation of 

pathogenesis in obstructive nephropathy. This paper presents a 

tool for the automatic or manual segmentation of such regions 

along with methodology for their characterization in terms of 

the exhibited pathology. The proposed implementation is based 

on custom code written in Java and the utilization of open 

source tools (i.e. RapidMiner, ImageJ). The corresponding 

implementation details along with the initial evaluation of the 

proposed integrated system are also presented in the paper. 

I. INTRODUCTION 

The kidney is a multicellular, heterogeneous, multi-
structural organ that is responsible for a part of the complex 
process of blood’s purification. As blood flows through the 
kidneys, waste materials, chemicals and unneeded water are 
removed out of the body as urine. Kidneys are being affected 
by many chronic diseases often leading to a slow 
deterioration of this organ, which implies to an inappropriate 
cleaning of the blood. Obstructive Nephropathy [1] is the 
main cause of renal failure, which occurs in all ages but is 
often met in children and infants. It is caused by obstruction 
of the urinary tract, with hydronephrosis (which is dilation of 
the renal pelvis and calyses resulting from obstruction to flow 
of urine), slowing of the glomerular filtration rate and tubular 
abnormalities.  

Considering that obstructive nephropathy is not a rare 
disease [1], automated detection of the pathogenic areas on a 
kidney biopsy image is very useful for the proper assessment 
of the disease. In this context we have developed a computer-
based application, which is able to recognize salient objects 
(i.e. see in Fig.1 non-Pathogenic Glomerulus, Pathogenic 
Glomerulus, non-Pathogenic Tubulus and Pathogenic 
Tubulus) among other regions, aiming at the quantification of 
the depicted in the image disease. This work is an evolution 
of [21]. In this paper we present the details of the 
implemented application along with an initial evaluation. 
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Figure 1.  Regions of Interest and their characterization on a kidney biopsy 

image. 

The rest of the paper is organized as follows: Section 2 
discusses related work in the field, while Section 3 describes 
the proposed methodology. Section 4 provides the evaluation 
results and finally Section 5 concludes the paper. 

II. RELATED WORK 

The field of microscopy image analysis has occupied 
several research teams and significant research work may be 
found in literature in this field. Maglogiannis et al. in [2] 
present a tool, which classifies biological microscopic images 
of lung tissue sections with idiopathic pulmonary fibrosis. 
Similar tools have also been proposed for the assessment of 
liver fibrosis [3]-[6], the study of micro vascular circulating 
leukocytes [7], the assessment of testicular interstitial 
fibrosis, [8], [[9]], or that of lung fibrosis [10]. The use of 
pattern recognition or classification methods like Support 
Vector Machines or Neural Networks could enable the design 
of decision-making algorithms, appropriate to microscopic 
data. Within this context, a method for evaluation of electron 
microscopic images of serial sections based on the Gabor 
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wavelets and the construction of a mapping between the 
“model” and the “target” image has been proposed in [11]. 
There are additional research works that could be referred, 
but to our best knowledge there is no other related work in 
the literature addressing automated characterization of 
obstructive nephropathy images.  

III. MATERIALS AND METHODS 

An overview of the designed and implemented image 
processing pipeline is depicted in Fig. 2. The image is 
divided in blocks (squares) and each block is allocated 
through a classification procedure to a specific salient object 
or background. Then a morphological operator based on 
majority voting is utilized, in order to remove erroneously 
classified segments of the image. 

A. Image Dataset 

The utilized image dataset has been obtained from healthy 
and pathogenic kidney biopsies. In the context of our study, 
60 images were utilized, 30 control and 30 pathological. 
Samples are stained with the Sirius Red technique, which is 
one of the best-understood techniques of collagen histo-
chemistry. In bright-field microscopy collagen are red on a 
pale yellow, while nuclei are ideally black but may often be 
grey or brown. In the examined kidney images the 
pathological findings are connected with alterations in the 
imaging of the 2 major salient objects: Tubulus and 
Glomerulus. 

 

Figure 2.  Flow Diagram of the proposed application for the recognition of 

salient objects in Kidney Biopsy Images 

 

A Nikon Eclipse E400 microscope was used with a Nikon 

lens Plan Fluor 20x / 0.50; DIC M; ! / 0.17 WD 2.1 
combined with a Microfire by Optronics camera with the 
following settings in order to capture the kidney biopsy 
images. Settings: exposure were as following: 10ms; Red: 
105; Green: 100; Blue: 100; Gain: 1; Luminosity: 50; 
Contrast: 60. 

TABLE I.  RESULTS OF THE CLASSIFICATION MODELS OF 

SEGMENTATION WINDOW 37X37 

Classifiers
true non-

Pathogenic 

Glomerulus

true non-

Pathogenic 

Tubulus

true 

Pathogenic 

Glomerulus

true 

Pathogenic 

Tubulus

class 

precision

Total 

Accuracy

SVM

pred. non-

Pathogenic 

Glomerulus
381 1 12 12 93.842

pred. non-

Pathogenic 

Tubulus

4 244 0 0 98.387

pred. 

Pathogenic 

Glomerulus

8 0 312 12 93.976

pred. 

Pathogenic 

Tubulus
4 3 14 314 93.731

class 

recall
95.970 98.387 92.308 92.899 94.701

KNN

pred. non-

Pathogenic 

Glomerulus
371 7 12 16 91.379

pred. non-

Pathogenic 

Tubulus

6 232 0 5 95.473

pred. 

Pathogenic 

Glomerulus

11 0 311 17 91.740

pred. 

Pathogenic 

Tubulus
9 9 15 300 90.090

class 

recall
93.451 93.548 92.012 88.757 91.900

Decision 

Trees

pred. non-

Pathogenic 

Glomerulus
374 2 13 20 91.443

pred. non-

Pathogenic 

Tubulus

4 244 0 4 96.825

pred. 

Pathogenic 

Glomerulus

11 0 315 11 93.472

pred. 

Pathogenic 

Tubulus
8 2 10 303 93.808

class 

recall
94.207 98.387 93.195 89.645 93.565

Naïve 

Bayes

pred. non-

Pathogenic 

Glomerulus
341 0 4 12 95.518

pred. non-

Pathogenic 

Tubulus

3 243 0 0 98.780

pred. 

Pathogenic 

Glomerulus

26 0 318 11 89.577

pred. 

Pathogenic 

Tubulus
27 5 16 315 86.777

class 

recall
85.894 97.984 94.083 93.195 92.127

 

B. Salient Object Detection 

In the specific images four (4) types/classes of salient 
objects are recognized. They are namely: non-Pathogenic 
Glomerulus, Pathogenic Glomerulus, non-Pathogenic 
Tubulus and Pathogenic Tubulus. Non-pathogenic and 
pathogenic Glomerulus has a diameter ranging from 50 to 
120 µm [12]. The tubules of the nephrons are 30 – 55 mm 
long [13] with an average diameter of 50µm. 

Since the edges of the targeted regions are not clear in the 
biopsy images, a block based segmentation approach is 
adopted. The image is divided in blocks (squares). 
Segmentation squares are much smaller than the 
aforementioned objects. The size of the block is set 37x37. 
This value has been selected heuristically, as the most 
appropriate for providing satisfying accuracy and acceptable 
processing times, based on conducted experiments.  
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For the feature extraction procedure, customized code 
was developed in order to separate the ROI into smaller 
square segments of a specific width (defined by the user and 
37x37 in our case). Mean, Standard deviation, Contrast, 
Inverse Difference Moment, Correlation, Entropy and 
Angular Second Moment are the features, which were used as 
inputs for the classification of each segmentation block. The 
above features have been selected as the most appropriate 
textural features for image classification [14]. The only 
preprocessing step of the image data concerns gray scale 
conversion. Some additional preprocessing techniques were 
tested (i.e. histogram equalization and contrast enhancement 
etc,) but they were omitted at the end, since they provided 
lower accuracy. 

Each block is allocated through the classification 
procedure to a specific class. Four widely known classifiers 
were examined, namely: Support Vector Machines (SVM) 
[15], Naïve Bayes [16], K-Nearest Neighbor [17] and 
Decision trees [18].  

During the training procedure of the classification model, 
representative regions were selected through the above 
feature extraction procedure. The expert biologists 
participating in this research did the selection. This resulted 
in a training set of about 1200 segmentation squares (400 of 
each class). The ten-fold cross validation [19] has been 
adopted as a method for testing the accuracy. As depicted in 
Table I, the results are satisfactory. The best performing 
classifier for the current problem is the SVM classifier 
achieving 94.7% accuracy according to ground truth blocks, 
defined by the experts. 

The produced segmented images are quite noisy, thus a 
morphological filtering is required (see Fig. 3). A simple 
pixel majority vote [20] recursive technique with a dynamic 
vote limit proved sufficient for this task. Regarding the 
Glomerulus object, a threshold of a minimum area of 7 
blocks is set because as it noticed through experiments and 
observation, there is no glomerulus smaller than 9 blocks. 
The whole segmentation procedure is depicted in Fig. 4 for 
several images.  

 

Figure 3.  a) Original image, b) Segmented image, c) Majority vote 

enhanced 

C. Image Characterization 

Through the classification of the blocks and the assistance of 

majority vote technique, salient object detection is achieved. 

Following the image segmentation, features of the detected 

total regions may be calculated. The calculation of 23 

features is supported by the developed application  (Mean, 

Standard Deviation, Correlation, Angular Second Moment, 

Inverse Difference Moment, Contrast, Entropy, Minimum 

Grayscale value, Maximum Grayscale Value, Mode, ROI’s 

height, ROI’s width, ROI’s percentage, Area (in pixels), 

Median, Kurtosis, Skewness, Histogram’s minimum value, 

Histogram’s maximum value, Area Fraction, Centroid, 

Angle and Center of Mass). The above set of features 

provides additional information about the characterization of 

a salient object. 

  

Figure 4.  Automated Segmentation and Annotation Results 

IV. EXPERIMENTAL RESULTS  

As it can be noticed in Fig. 4, the automated segmentation 
and characterization feature of the proposed application 
manages to detect the salient objects in the kidney biopsy 
images. The tool was tested in eight random (8) unknown 
images from the 60 images dataset, in order to prove its 
versatility: four (4) healthy/control and four (4) pathogenic. 
The corresponding results are presented in Table II, where 
Area Involved column stands for the percentage of the image 
that represents a specific salient foreground object.  

The sensitivity, specificity and accuracy percentages of 
the tool are presented in Table III. As it can be noticed, since 
the background classes (Pathogenic Tubulus and Non-
pathogenic Tubulus) cannot be count as a unit, the above 
values are presented only for the foreground objects. Some 
objects are miss–recognized with their corresponding 
opposite state object in control images (false positives). This 
occurs rarely, due to some similarities in textural features. 
Another miss-recognition cause is linked with the existence 
of artifact objects, which are not informative and put 
additional “noise” to the kidney biopsy images. Nevertheless 
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the performance is considered satisfying by the collaborating 
biologists and the achieved quantification quite useful for 
several images batch processing.  

TABLE II.  TEST OF THE IMPLEMENTED MODEL 

!"#$%&!'
()"*%+&,-&.#/0%12&

3*4%526
'%65+0720,1

8+%#&

!19,/9%:&;<=

>)++%12&+)1?6&

#55)+#5@&;<=

5,12+,/A ! "#$%&'()#*+$,-./0#1+23034 5 677

"#$%&'()#*+$,-./0#1+23034 5

5,12+,/B 6 "#$%&'()#*+$,-./0#1+23034 8 677

5,12+,/C 9 "#$%&'()#*+$,-./0#1+23034 ! :7

"#$%&'()#*+$,-./0#1+23034 5

"#$%&'()#*+$,-./0#1+23034 !

"#$%&'()#*+$,-./0#1+23034 5

&'()#*+$,-./0#1+23034 8
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"#$%&'()#*+$,-./0#1+23034 !

7#2E,$%105A ! &'()#*+$,-./0#1+23034 8 677

&'()#*+$,-./0#1+23034 !

7#2E,$%105B ! &'()#*+$,-./0#1+23034 7 97

&'()#*+$,-./0#1+23034 ;

7#2E,$%105C ! &'()#*+$,-./0#1+23034 8 677

&'()#*+$,-./0#1+23034 5

7#2E,$%105D 5 &'()#*+$,-./0#1+23034 8 677

&'()#*+$,-./0#1+23034 !

&'()#*+$,-./0#1+23034 8  

TABLE III.  APPLICATION’S ACCURACY, SPECIFICITY AND SENSITIVITY 
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V.  CONCLUSION 

In this paper we presented a novel tool for segmenting 
and characterizing microscopic kidney biopsies. The 
achieved accuracy results are quite satisfying. Although some 
misclassifications arise that should be treated in future work, 
the proposed methodology has been proved effective and 
useful for automated detection and quantification of 
pathogenesis in Kidney biopsy images. 
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