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Abstract— Recently, endoscopic high-speed laryngoscopy has
been established for commercial use and constitutes a state-
of-the-art technique to examine vocal fold dynamics. Despite
overcoming many limitations of commonly applied stroboscopy
it has not gained widespread clinical application, yet. A major
drawback is a missing methodology of extracting valuable
features to support visual assessment or computer-aided di-
agnosis. In this paper a compact and descriptive feature set
is presented. The feature extraction routines are based on
two-dimensional color graphs called phonovibrograms (PVG).
These graphs contain the full spatio-temporal pattern of vocal
fold dynamics and are therefore suited to derive features that
comprehensively describe the vibration pattern of vocal folds.
Within our approach, clinically relevant features such as glottal
closure type, symmetry and periodicity are quantified in a set
of 10 descriptive features. The suitability for classification tasks
is shown using a clinical data set comprising 50 healthy and 50
paralytic subjects. A classification accuracy of 93.2% has been
achieved.

I. INTRODUCTION

Approximately 3 to 9 percent of the US population suffers
from voice disorders [1]. Furthermore, about 25 percent of
the working population depends on their voice functionality
due to their jobs [2]. Consequently, computer-aided diagnosis
of voice disorders has gained increased attention within the
last years.
Among modern imaging techniques, high-speed videoen-
doscopy (HSV) constitutes the only technique that captures
the true intra-cycle vibratory behavior through a full image
of the vocal folds (VF) [3]. The endoscope is inserted
into the oral cavity and captures up to 10,000 frames per
second of the rapidly moving VFs during phonation (Fig. 1).
Assessment of laryngeal function on the basis of HSV videos
is time consuming and costly; one second of phonation
corresponds to thousands of video frames and analysis must
be performed by trained professionals.

To overcome these limitations, automated assessment of
HSV video sequences has been adressed by several authors.
In [4] assessment is based on the extracted glottal area wave-
form, specifying the time-dependent area enclosed by both
VFs. Others employ two- [5], [6] or multi-mass models [7],
which are adapted to the recorded VF movement. However,
glottal area evaluation does not discriminate between left and
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Fig. 1. Schematic representation of rigid high-speed endoscopy. The
endoscope is inserted into the oral cavity and captures several thousand
frames per second of the larynx during phonation.

right VF and due to the complexity of VF vibration it is
sophisticated to define adequate model assumptions.
A novel classification strategy maps the whole spatio-
temporal pattern of VF vibration to single color graphs called
phonovibrograms (PVG) [8]. The periodic VF movement re-
mains in individual vibration patterns that can be analyzed by
image processing methods. The PVG data matrix can be used
to derive characteristic features that describe the fundamental
properties of both the PVG and VF dynamics. Voigt et al.
[9], [10] extracts iso-contour lines from an averaged PVG-
cycle representing constant deflection states of VFs. This
approach takes a lot of individual features into consideration,
but nevertheless, has two main drawbacks. First, it requires
quasi-periodic VF vibration since subsequent cycles have
to be identified and secondly, the corresponding feature
vecor comprises 448 highly correlated quantitative features.
However, strong pathologies may be accompanied by a
general loss of periodicity and the identification of individual
cycles becomes impracticable.
In this study, we designed a wavelet-based classification sys-
tem that fuses glottal closure details and phase information
forming a low-dimensional feature vector without the need
of identifying individual cycles. The features’ discriminative
power is evaluated by classifying normophonic and paralytic
voices.

II. MATERIAL AND METHOD
A. Subjects and equipment

One hundred patients, fifty of them without any signs of
voice disorders (20m, mean age 53.6 ± 15.00, 30w, mean
age 45.5 ± 18.65) and 50 with unilateral VF paresis (22m,
mean age 56.4± 12.81, 28w, mean age 48.8± 18.43) were
investigated with a HS Endocam 5562 high-speed camera
(Richard Wolf GmbH, Knittlingen, Germany). This camera
provides a spatial resolution of 256 × 256 pixels and a
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Fig. 2. PVG construction process. (1) Image segmentation and vocal fold identification. (2) Contour splitting and color coding. (3) Concatenation of the
color-coded strips forming the phonovibrogram (PVG)

sampling rate of 4000 frames per second. All patients were
requested to phonate the vowel /ae/ at habitual pitch and
loudness for at least one second during rigid endoscopy.

B. Phonovibrogram extraction
Phonovibrography is a method for mapping high speed

videos into two dimensional color graphs. The construction
process is summarized in Figure 2. First, the glottal area
is segmented in each video frame using a modified region
growing algorithm [11] (Figure 2, step 1). The left contour
is rotated by 180◦ around the P commissure. Along the
glottal axis, from most anterior (A) to most posterior (P)
ending, the distances to the left and right VF contour are
color-coded (Figure 2, step 2) and finally, the color-coded
strips are concatenated forming a two-dimensional image
called PVG (Figure 2, step 3). The PVG color intensities
reflect the deflection as a time-dependent function. While
bright colors correspond to large distances from the glottal
axis, dark colors indicate closed states of the glottis. A
detailed description of the assembling process can be found
in [8]. The PVG-graph provides the basis for further feature
extraction routines that will be described in the following
section.

C. Feature extraction
Characteristic patterns of regular vocal vibration are

embodied in geometrical structures within the PVG image
determined by the opening- and closing instant (Fig.
2, step 3). According to the European Laryngological
Society (ELS) [12], these can be classified as triangle,
V-shape, rectangle, convex and concave glottal closure type.
As this classification is performed in a subjective manner,
it is not suitable for an adequate description of VF dynamics.

The continuous wavelet transform (CWT) is a convolution of
an arbitrary signal with a set of functions Ψa,b generated by
the mother wavelet Ψ and is given by the inner L2-product

WΨ{g}(a, b) = 〈g,Ψa,b〉L2 . (1)

Two wavelet bases are employed for the treatment of PVG-
data: Ψ1 denotes a complex Gaussian wavelet of the 8-th

order and Ψ2 the real valued Mexican hat. For each position
k along the glottal axis the wavelet transform is given by

Wi(k, a, b) =WΨi
{PV Gk(t)}(a, b), i = 1, 2. (2)

Accordingly, the corresponding wavelet-phase reads as

P (k, b) = arg
<(W1(k, a0, b))

=(W1(k, a0, b))
(3)

where a0 denotes the scale with maximum entropy [14]. In

Fig. 3. Representative cycles at different frequency bands. The multiscale
product provides a robust and precise localization of opening- and closing
instants.

this context, entropy is seen as a measure of disorder of a
system or process [13], [14]. Hence, the scale a0 relates to
the fundamental frequency, if the signal is periodic.
The glottal closure type essentially depends on glottal
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opening- and closing instants. These instants are indicated by
a rapid behavior change of the glottis [15], resulting in sharp
transitions within W2. In this context, singularities can be
localized adequately by multiplying the wavelet coefficients
of different scales [16] of W2. The combination of phase and
amplitude information yields a representative cycle

Ca(k, ϕ) =
∑

M={b|P (k,b)=ϕ}

1

|M |
W2(k, a, b) (4)

shown in Figure 3. Opening and closing instants are extracted
from the multiscale product C a0

4
·C a0

8
·C a0

16
for left and right

VF separately.
To enable a compact representation of the PVG-geometry,

a principal component analysis (PCA) was performed
projecting the feature space to three dimensions. The first
three eigenvectors of the PCA represent different closure
types determined by the European Laryngological Society
[12] which confirms the reasonableness of this classification.
The distance between the projection of left and right VF
vibration in PCA space then provides a measure of
vibration-symmetry and the energy-distribution of the first
eigenvectors directly reflects the vibration periodicity.

Besides geometrical patterns, symmetry and periodicity,
an averaged phase shift between left and right vibration was
considered. In this context, gl denotes the area enclosed by
the left vocal fold and the glottal axis and gr the remaining
area for the right side. The wavelet-phases of left and right
VF vibration read

φl(b) = arg (WΨ1
{gl(t)}(a0, b)) (5)

φr(b) = arg (WΨ1
{gr(t)}(a0, b)). (6)

Hence, an averaged phase delay φ of n frames is obtained
by

φ =
1

n

n∑
b=1

| arg (ei(φl(b)−φr(b)))| (7)

providing a measure of synchronicity.

Taken together, the feature vector comprises three pa-
rameters for quantifying the geometrical structure of the
vibration pattern as well as the sum of the energy of the first
three eigenvectors for each VF, respectively. Furthermore,
the distance between left and right VF projection in PCA
space and a mean phase shift are employed for classification
defining a 10-dimensional feature vector.

D. Classification

For the evaluation of the features’ discriminative power,
a Support Vector Machine (SVM) was employed to build a
predictive model in order to decide whether a subject belongs
to the healthy or paralytic class. Due to a restricted amount
of data, cross-validation with the leave-one-out method was
used for evaluation and reproducibility validity. The SVM
was further configured with different kernel functions: linear,
polynomial and radial basis function. Kernel parameters were

found by using a combination of coupled simulated annealing
and a standard simplex method.

III. RESULTS

The classification accuracies are shown in Figure 4.
The best performance of 93.2% classification accuracy was
archived by SVM with RBF kernel functions. The corre-
sponding standard deviation of 0.63% clearly emphasizes the
consistency and stability of the classifier results.

Fig. 4. Classification accuracy of SVM classification employing different
kernel functions.

Fig. 5. PCA-subspace of vibrations patterns classified in six clusters.
The first eigenvectors correspond to the ELS classification [12]: rectangle
narrow-wide and triangle ventral-dorsal.

The PCA subspace spanned by first two eigenvectors is
depicted in Figure 5. The first eigenvector corresponds to a
rectangle shaped vibration where high eigenvalues correlate
with a broad contour and vice versa, low values come along
with a narrow geometry. Accordingly, the second eigenvalue
determines triangle and V-shape contours. The six clusters
are resulting from an agglomerative cluster analysis of 100
healthy subjects. Exemplarily, the projections of left and
right VF vibration patterns of a healthy (male, 60yrs) and
a paralytic subject (female, 54yrs) are shown in Figure 6.
As already mentioned, the distance between left and right
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vibration pattern provides a measure of vibration symmetry,
which is 25.65 for the healthy and 129.38 for the paralytic
subject, indicating a strong decrease of symmetry of the
paralytic subject.

Fig. 6. PVGs computed from a healthy subject (left side, male, 60yrs) and
a paralytic subject (right side, female, 54yrs).

IV. DISCUSSION

Classification results demonstrate the suitability of the
proposed feature set for the classification of voice disorders.
The compact feature space is spanned merely by 10 quanti-
tative features providing stable classification results with low
variance of accuracy. Our studies did not show any improvent
of the accuracy when taking more than three eigenvectors
into consideration.
The reason for the misclassification-rate of 6.8% may be seen
in compensatory vocal behaviors at patients’ presentation
[17] implicating a highly regular and symmetric vibratory
behavior. However, extension of the feature set as well as
optimization of the classifier will most likely enhance the
performance in the near future.
Currently, the procedure is validated within a comprehensive
study, where normative data is acquired for the classifica-
tion of vibratory patterns. Further research will extend the
classification task to multiple diagnostic findings including
functional voice disorders. Therefore, additional features
concerning phase correlations are assessed in terms of their
discriminant power. Also, the synchronously recorded acous-
tic waveform will be incorporated into the analysis.
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