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Abstract—Histopathological images acquired from different 

experimental set-ups often suffer from batch-effects due to color 

variations and scale variations. In this paper, we develop a 

novel scale normalization model for histopathological images 

based on nuclear area distributions. Results indicate that the 

normalization model closely fits empirical values for two renal 

tumor datasets. We study the effect of scale normalization on 

classification of renal tumor images. Scale normalization 

improves classification performance in most cases. However, 

performance decreases in a few cases. In order to understand 

this, we propose two methods to filter extracted image features 

that are sensitive to image scaling and features that are 

uncorrelated with scaling factor. Feature filtering improves the 

classification performance of cases that were initially negatively 

affected by scale normalization. 

I. INTRODUCTION 

Histopathological analysis of biopsy specimens is 
essential for diagnosing and characterizing cancer. 
Computer-aided cancer diagnostic tools aid pathologists in 
making objective and timely decisions [1]. Feature extraction 
and data mining are the key components of diagnostic 
systems. For a system with a single data source, we can 
expect sample images to have the same spatial resolution, 
magnification and stain colors.  Hence, a predictive model 
can be developed by mining image features from a training 
set without normalization. However, if the images are 
acquired from separate set-ups, images suffer from both 
color and scale variations. Color variations affect color-
based image features and color-based segmentation, hence 
affecting the diagnostic performance of the model. Previous 
work suggests methods for color normalization and studies 
its effect on color segmentation accuracy with different batch 
images [2]. Scale variations can be caused by the variation in 
numerical aperture, magnification, or digitizing device of the 
microscope. Scale variations affect various image features 
such as object size, topology and texture. To the best of our 
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knowledge, no work has been done to address this issue in 
histopathological images.  

For natural images (e.g., photographs of buildings and 
landscapes), scale variations have been widely studied and 
researchers have suggested several scale invariant features 
for representing images [3]. However, in histopathological 
images, the size of cellular structures, such as nuclei and 
glands, has been reported to be very important [4].  A similar 
challenge is faced in organ imaging, especially when dealing 
with brain MRI, where the size of the brain and its structures 
varies among samples. Researchers have suggested methods 
for spatial normalization and registration of these images 
based on the size or volume of anatomical structures [5].  

We develop a model to normalize histopathological 
image scale using nuclear area (measured in pixels). After 
scale normalization, we represent each image using a 
comprehensive image-feature list [6]. We then develop 
binary diagnostic models to classify 4 renal tumor subtypes 
from two image batches. Our results indicate that scale 
normalization improves classification performance in most 
cases but has no effect or negative effects for a few cases. 
Filtering the features based on scaling-induced variation 
improves prediction performance in some cases that were 
previously negatively affected by scale normalization. 

II. METHODS 

A. Datasets 

We perform this study on RGB images of hematoxylin 
and eosin (H&E) stained renal tumor tissue samples. We use 
two separately acquired datasets—RCC1 and RCC2 (Figure 

1). These datasets include four prominent histological 
subtypes of renal tumors—chromophobe (CH), clear cell 
(CC), papillary (PA), and oncocytoma (ON). RCC1 contains 
48 images with 12 images of each subtype. RCC2 contains 
58 images with 20, 17, 16, and 5 images of CH, CC, PA, and 
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Figure 1. Sample histological tissue images (270x330 pixels) for 

four renal tumor subtypes from RCC1 (a-d) and RCC2 (e-h).  

Papillary Chromophobe Oncocytoma 
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ON subtypes, respectively. Each sample image is about 
1200x1600 pixels. 

B. Scale Normalization 

At a reasonable microscopic magnification, cellular 
nuclei are easily identified in histological tissue images. We 
use a concavity-based cluster segmentation method for 
segmenting nuclear clusters in histopathological images to 
extract individual nuclei [7]. In a single image, nuclear area 
may vary with cancer grade and cancer subtype [4]. 
However, if we study the distribution of all nuclei in a 
dataset, the distribution peaks at a specific nuclear area for 
the dataset. As expected, image scaling shifts the distribution 
of nuclear area. Figure 2 illustrates the distribution of 
nuclear area as a function of scale for the RCC1 dataset 
(results for the RCC2 dataset are similar). The scaling factor, 
s, is relative to the original image size. We use the Lanczos 
(3-lobe) filter for scaling due to its good balance between 
anti-aliasing and blurring. The dataset is scaled by various 
scaling factors, s, ranging from 0.6 to 1.4. We observe a 
clear trend in the distribution of nuclear area with scaling. 
We mathematically formulate this relationship as follows. 
We know s multiplies both the x and y dimension of an 

image, resulting in an increase of area by s
2
 (i.e., 

2
sA

s
 , 

where As is the image area at scaling factor s). We can 
estimate the scale of an image dataset using the relationship 

1
AAs

s
 . We quantify As using the median nuclear area 

of a dataset at scale s. Therefore, while developing the 
diagnostic model, we calculate A1 (median nuclear area at 
original scale) for the training and testing datasets and 
calculate the scaling factor between them. We then scale 
down the dataset with larger nuclear area.  

C. Feature Extraction 

We extract a comprehensive set of image features from 
each sample [6]. This set comprises of 12 feature subsets 
extracted from different processed forms of the original 
sample images, resulting in a total of 2663 features. Table 1 
lists the 12 feature subsets and their combination set (i.e., the 
All set). Figure 3 describes the flow of feature extraction, 
where cyan boxes represent different forms of the processed 
image while pink boxes represent feature subsets.  

 

We first describe all cyan boxes. We normalize the 
colors in the sample image to a standard reference, using a 
color map quantile normalization method to eliminate the 
color batch effects [2]. We quantize the color space of the 
image into 64 levels using self-organizing maps [8]. The 
color quantized image is similar to a grayscale image except 
the quantization is nonlinear. The four color stains (blue, 
pink, white, and red) in an H&E stained image correspond to 
nuclei, red-blood cells, cytoplasmic and glandular structures, 
respectively. We segment these colors using an automatic 
color segmentation method [2]. The stain segmented image 
is a four-level grayscale image where gray-levels of 1, 2, 3 
and 4 are assigned to pixels that belong to the four structures. 
We then extract binary masks for nuclear, cytoplasmic and 
glandular structures in the image based on segmentation 
labels. We further segment the nuclear clusters in the nuclear 
mask into individual nuclei to produce the segmented nuclei 
[7, 9].  

Next, we briefly describe various feature groups in 
Figure 3. Previous work discusses these feature groups and 
their various parameters in detail [6]. Color features include 
frequencies of R, G, and B histograms. The Texture1 feature 
set includes various commonly used texture properties such 
as Haralick properties from GLCM (Gray Level Co-
occurrence Matrix), energy and entropy of Gabor filter 
responses, energy and entropy of wavelet packet sub-
matrices and energy and entropy of multiwavelet 
decomposition sub-matrices. The Texture2 feature set 
includes all features in Texture1 as well as gray-level 
distribution. Texture3 includes all features in Texture1 as 
well as stain co-occurrence, capturing co-occurrence of 
stains similar to GLCM. Texture4 includes Haralick 
properties and gray-level distribution. All of the above 
features capture global features.  

In addition to global features, we capture object level 
features. The Shape feature set includes various shape 
properties of image objects including pixel area, convex hull 
area, solidity, perimeter, elliptical properties (area, major-
minor axes lengths, eccentricity and orientation), boundary 
fractal, bending energy, Fourier shape descriptor 
reconstruction error,  and object count. The Topology 
feature set captures architectural properties of images 
including Delaunay triangles (area and side lengths), 
Voronoi diagrams (area, side lengths and perimeters), 

Set Count 

GC 48 

GT 557 

GCT 493 

StT 503 

CStOS 249 

CStT 77 

GOS 249 

NStOS 249 

NStT 77 

NStTo 56 

NS 49 

NTo 56 

All 2663 

 

Figure 3. Flow diagram for image feature 

extraction. Cyan boxes: original or processed 

image. Pink boxes: feature subset. Table 1 lists the 

number of features in each feature subset. 

 

Table 1 

Figure 2. Nuclear area distribution at various scales for RCC1. 

The cyan curve corresponds to the original scale (s=1) of the 

dataset. Changes in image scale shift the distribution. 
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minimum spanning tree edge length and closeness. The 
Nuclear Shape feature set captures nuclear elliptical shape 
properties, nuclear cluster size (in number of nuclei) and 
nuclear count. 

C. Feature Filtering 

Some image features vary with image scale while others 
do not. Moreover, some features vary in an unpredictable 
manner with image scale. Consider the scatter plots in 
Figure 4. These plots capture feature variance across 
multiple image scales as well as feature correlation with 
scale. The Y-axis of this plot measures the normalized 
standard deviation, σm, of the feature m when a dataset is 
scaled by various scaling factors, sj (j=1,..,S). The 
normalized standard deviation is an average over all 
samples, N, in the dataset and is normalized by the average 
magnitude of the feature at original scale. This normalization 
scales the standard deviation of all features such that they are 
comparable regardless of feature magnitude. σm is 
represented by the following equation: 
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We scale the datasets using the scaling factors 

sj=0.6:0.1:1.4, and  propose two filtering methods based on 
feature variation and correlation with scale: 1) scale variant 
feature filtering, and 2) uncorrelated scale variant feature 
filtering. Feature filtering is done based on the training set, 
before model development. In scale variant feature filtering, 
we remove all features with high standard deviation, σm> 0.1. 
After this filtering we have 1297 and 1313 features for 
RCC1 and RCC2 respectively. In uncorrelated scale variant 
feature filtering, we filter features with high variation (σm> 
0.1) and low correlation (|rm| < 0.1). This filtering method 
filters the high variant features only if they have variation 
uncorrelated to scaling. After this filtering we have 2289 and 
2274 features for RCC1 and RCC2 respectively. 

C. Feature Selection and Classification 

We consider binary endpoints comparing all pairs of 
classes. With 4 renal tumor subtypes, we have 6 binary 
endpoints per dataset, resulting in a total of 12 endpoints. In 
this study, we have a limited number of samples and a large 
number of features. As such, we use 10 iterations of 5-fold 
nested cross-validation (CV) to obtain an robust estimate of 

prediction performance [10]. We use a Bayesian classifier 
with the following parameters—pooled and un-pooled 
variance with spherical and diagonal variance matrices, 
resulting in four Bayesian models. We use two forms of 
mRMR (minimum redundancy and maximum relevance) as 
our feature selection methods: mRMR-d (difference) and 
mRMR-q (quotient) [11]. We consider 30 feature sizes 
ranging from 1 to 30. Thus, for each endpoint, we develop 
240 (30*4*2) models. We select the optimal prediction 
model based on the performance estimated from  internal 
CV. We select the simplest model within one standard 
deviation from the best performing model to avoid over 
fitting. We define the simplest model as one that prefers 
small feature size, pooled variance over un-pooled variance, 
and spherical covariance over diagonal covariance. We use 
average external CV classification accuracy as our 
performance metric. 

III. RESULTS AND DISCUSSION 

A.  Validation of Normalization Model 

We validate our scale normalization model using 
empirical values. Figure 5 compares the model to empirical 
values of nuclear pixel area. The cyan dashed curve and 
green dotted curve represent the models for RCC1 and 

RCC2, respectively, generated using the model 
1

AAs
s

 , 

where A1 is known for both datasets. The red circles and red 
squares represent the empirical values for nuclear area 
extracted from RCC1 and RCC2, respectively. We scale the 
datasets with the scaling factors s=0.5:0.1:2.0 and calculate 
their median nuclear area to obtain the empirical values. 

Figure 4. The relationship between feature variation and feature 

correlation with image scale. Feature variation is quantified as 

normalized standard deviation. Features above the solid horizontal 

line have high variance with respect to image scale. Features 

between the dashed lines are uncorrelated with image scale.  
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Empirical values for nuclear area closely support our model. 
The blue asterisks mark the scaling point for each dataset in 
relation to the other dataset. The scale of RCC2 is 1.15 times 
the scale of RCC1. Likewise, RCC1 is 0.87 times the scale of 
RCC2. Therefore, to assess classification performance, we 
scale the RCC2 dataset by a factor of 0.87.  

B.  Comparison of Diagnostic Performance 

We illustrate the effect of scale normalization on 
classification performance by developing diagnostic models 
for 12 endpoints using four methods. First, we develop 
models with no normalization and use this as our baseline 
(Table 2, M1). Second, we normalize datasets using scale 
normalization and develop diagnostic models using all 
features (M2). Third, we normalize datasets, filter the 
features using scale variant feature filtering and develop 
diagnostic models with the filtered feature set (M3). Fourth, 
we normalize datasets and develop diagnostic models using 
features after filtering uncorrelated scale variant features  
(M4). Table 2 compares the results for M2, M3 and M4 to 
the baseline, M1. We have highlighted the performance in 
green or pink if there is an increase or decrease compared to 
M1. It can be seen that M2 improves or has no effect on 
performance in all but three cases: CC  vs.  PA with RCC1 
as training, and CH vs. ON and CC vs. PA with RCC2 as 
training. This decrease is possibly due to selection of 
features that have high and unpredictable variation with 
scale. It can be observed that out of these three endpoints, 
the performance of the first two—CC vs. PA with RCC1 as 
training and CH vs. ON with RCC2 as training—can be 
improved by both filtering methods. However, filtering 
methods may remove some useful features for other 
diagnostic endpoints. Overall M4, with uncorrelated scale 
invariant feature filtering, performs better compared to M3 
with scale invariant feature filtering.  

IV. CONCLUSION 

We have described a novel scale normalization method 
for histological images based on nuclear area. We verified 
the scale normalization model using empirical values and 
illustrated the effect of scale normalization on classification 
performance using 12 renal tumor subtype endpoints. Scale 
normalization improves the predictive performance of 6 
endpoints and decreases the performance of 3 endpoints. We 

proposed two feature filtering methods to improve prediction 
performance and observed that feature filtering improves the 
performance of two out of three endpoints. We have 
considered datasets with only slight scale variations (~15%) 
and still observed improvements in performance. We 
hypothesize that scale normalization could greatly improve 
histological image classification performance in cases with 
larger scale batch effects.  
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Table 2: Diagnostic performance of models with All features. 

Endpoints M1 M2 M3 M4 

T
ra

in
=

R
C

C
1

, 

T
es

t=
R

C
C

2
 

CH vs. CC 0.50 0.58 0.67 0.60 

CH vs. ON 0.54 0.56 0.54 0.42 

CH vs. PA 0.92 0.92 0.92 0.88 

CC vs. ON 0.92 0.92 0.88 0.88 

CC vs. PA 0.75 0.63 0.79 0.92 

ON vs. PA 0.94 0.96 0.92 1.00 

T
ra

in
=

R
C

C
2

, 

T
es

t=
R

C
C

1
 

CH vs. CC 0.51 0.51 0.51 0.54 

CH vs. ON 0.60 0.68 0.48 0.36 

CH vs. PA 0.81 0.47 0.92 0.86 

CC vs. ON 0.82 0.95 0.82 0.86 

CC vs. PA 0.79 0.48 0.48 0.48 

ON vs. PA 0.86 0.90 0.62 0.90 

 

Note: Values 

highlighted in 

green and pink 

have increased 

and decreased 

performance 

compared to M1, 

respectively. 

M1: No normalization, M2: Scale normalization, M3: Scale 

normalization and filtering of scale variant features, M4: Scale 

normalization and filtering of uncorrelated scale variant features 

Figure 5. Comparison between scale normalization model and 

empirical values of nuclear area for the RCC1 and RCC2 datasets.  
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