
  

  

Abstract— In X-ray computed tomography (CT) the X rays 

are used to obtain the projection data needed to generate an 

image of the inside of an object. The image can be generated 

with different techniques. Iterative methods are more suitable 

for the reconstruction of images with high contrast and 

precision in noisy conditions and from a small number of 

projections. Their use may be important in portable scanners 

for their functionality in emergency situations. However, in 

practice, these methods are not widely used due to the high 

computational cost of their implementation.  In this work we 

analyze iterative parallel image reconstruction with the 

Portable Extensive Toolkit for Scientific computation (PETSc). 

I. INTRODUCTION 

In medicine, the diagnosis based on computed 
tomography (CT) is fundamental for the detection of 
abnormal tissues by different attenuation on X-ray energy, 
which frequently is not clearly distinguished for radiologists. 
In CT imaging, a set of projections taken with a scanner is 
used to reconstruct the internal structure of an object. The 
intensity of a beam of X-ray that passes through some object 
is observed to decrease.  By moving the source and detector, 
it is possible to obtain a set of projections. A single k-th 
projection at angle r can be defined as an integral of image 

intensities  along the line  and is given by the 

formula: 

         (1) 

The reconstruction problem consists of determining the 

values of the function   from the set of the 

experimental projection data. The methods of reconstruction 
can be divided into analytical, algebraic and statistical 
methods. Although the first tomography reconstruction from 
projections had been made using algebraic methods, 
presently, the reconstruction process in clinical scanners is 
based on analytical algorithms which use the inverse Fourier 
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transform. Filtered Back Projection algorithm (FBP) is one of 
the widely used algorithms and is well described in literature, 
for example [1]. On the other hand, the algebraic methods are 

less used due to their high computational cost.   

Nevertheless, the algebraic methods represent a dominant 
option due to two reasons. Firstly, the analytical methods 
require complete data collection which is not always 
possible. Second, they do not provide the optimal 

reconstruction in noisy conditions in the image [2].  

Algebraic methods allow reconstructing images with higher 
contrast and precision in noisy conditions from a small 
number of projections than the methods based on the Fourier 
transform [3].  In CT, it is common to find incomplete set of 
no equally spaced projections. In these cases, algebraic 
reconstruction methods provide images with better quality 

[4], [5], [6].  

Nevertheless, the major drawback of the algebraic methods is 
given by their high computational cost. We propose the usage 
of Extensive Toolkit for Scientific computation (PETSc) [8] 
in parallel image reconstruction. As it has been shown in our 
previous work [9], PETSc facilitates a great deal of the 
programming task and provides the possibility for the optimal 
usage of a whole system in the process of reconstruction. In 
this work, we use different way of presenting input data, 
which allows us to reduce significantly the reconstruction 
time and memory usage, and, at the same time, to augment 

the sizes of the reconstructed images.    

II. MATHEMATICAL ASPECTS 

     Let’s suppose that an image can be 

approximated by the matrix , whose values represent 
intensities of the image. We assume that the image fits some 
square region and is approximated by nxn matrix X. A 

projection k taken at angle r can be written as follows: 

        (2) 

where  are weight factors that depend on the 

projection number k and the angle r. Since i and j both range 
from 1 to n, there are n2 weight factors for a fixed k and r;   

are unknown intensities of the image. In matrix form (2) 

is given by the formula:  

           (3) 

where the system matrix  is formed by the elements 

, simulates computer tomography functioning and 

may not be square. 
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For a given angle, we assume that the number of projections 
ranges from 1 to m.  If there are k different angles, then in 
(3) P is the column matrix with mxk elements, X is the 

column matrix with n2 elements: 

  (4) 

and  A is the mkxn2 rectangular matrix: 

.    (5) 

Many properties of the reconstructed image depend on the 

approximations when calculating the system matrix. In this 

work we use Siddon algorithm [9] to calculate elements of 

the matrix in a rectangular grid.  It has been found [10] that 

Siddon algorithm gives a good approximation of the system 

matrix. In practice, A is a rectangular nonsymmetrical sparse 

matrix and therefore it is recommendable to store only 

nonzero elements. The main characteristics of the matrices 

used in the experiment are summarized in Table 1. The 

system (3) may be over determined or undetermined. Over 

determined systems contain more information on the image 

and, consequently, the reconstructed image is less noisy. 

TABLE I.  THE MAIN CHARACTERISTICS OF THE SYSTEM MATRIX 

Matrix Size 

(pixels) 
# Nonzero 

Elements 

Generation 

Time (sec) 

Matrix 

Size (MB) 

102400x65536 31490052 51 361 

51200x262144 31496952 56 361 

102400x262144 62993644 180 722 

204800x262144 125986544 540 1500 

 

Fundamentally, the algebraic methods of image 
reconstruction from projections are schemes for solving a 
linear system (3). The dimensions of A grow proportionally 
to the resolution of the image to be reconstructed and the 
number of projections, increasing therefore the 

computational cost. 

In (3) the input matrix (A) and the right hand side vector (P) 
are generated previously and can be stored in two formats: 
as a plain text or in a binary format.  The results in this work 
show that the binary format allows reducing significantly the 
assembling time performed by PETSc after reading the input 

data.  

Fig. 1 illustrates the following main steps of the 

reconstruction process:  

• CT projections are recollected by a scanner 

• The system matrix, that simulates the scanning 

process, is generated previously by Siddon 

algorithm 

• In binary format these data are used by LSQR solver 

to find the solution of the system (3) that represents 

the reconstructed image. 

 

Figure 1.  PETSc LSQR solver uses input data in binary format to 

reconstruct the image 

Today’s technology provides the possibility to parallelize 
calculations assigning each independent part to one processor 
which allows more efficient management of the resources of 
a system. In this work we employ PETSc library for parallel 
load of data, assembly of the system matrix and solving 

system (3) with an iterative method.  

PETSc is a set of tools for parallel (as well as serial) 
numerical solving of large sparse systems of equations. The 
library includes iterative methods based on Krylov subspaces, 
as well as several parallel formats for sparse matrices. PETSc 
is designed to facilitate extensibility. Thus, users can 
incorporate customized solvers and data structures when 
using the package. PETSc also provides an interface to 
several external software packages and runs on most UNIX 

based-systems.  

Furthermore, PETSc enables a great deal of runtime control 
for the user without any additional coding cost.  The runtime 
options include control over the choice of solvers, 
preconditioners and problem parameters as well as the 
generation of performance logs.  PETSc is intended for use in 
large-scale application projects and is in widespread general 

use throughout the high performance community. 

III. METHODOLOGY 

    For experimental purposes we used the real projections 
and the original image acquired from the Hospital Clinico 
Universitario in Valencia. We worked with fan-beam 
projections collected by the scanner with 512 sensors in the 
range 0 - 180 with 0.9 degree spacing. To be able to 
reconstruct the image with the iterative method we complete 
the given set up to 360 degrees using the symmetry of the 

system matrix. 

We wanted to analyze the capacity of iterative algorithms in 
parallel reconstruction of images from less number of 
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projections. With this purpose, from the initial set, three sets 
of equally spaced (with the angle steps 0.9, 1.8, and 3.6 

degrees) projections have been derived. 

As it has been aforementioned, PETSc facilitates a great deal 

of programming task. We use LSQR solver from PETSc 

library to find a solution of the least square problem that is 

equivalent to the ill conditioned system (3). The most part of 

the computation time is spent to assemble the   system 

matrix which is stored in the Compact Sparse Row format 

(CSR). To achieve better performance the assembly is made 

in parallel. The input matrix is divided among the 

processors, each of which is responsible of the assembly and 

the storage of one part of the matrix that is used afterwards 

for solving the system.  

Fig. 2 shows the idea of the parallel execution of the 

algorithm: the input data is read by one processor; the 

assembly of the system matrix and the right hand side 

vector, as well as the system solving, are made in parallel; 

the final solution, again, is stored in the main processor. 

Thus, the main steps of the algorithm can be resumed as 

follows: 

• Load input data  

• Create LSQR solver  
• Solve the system 

IV. RESULTS AND DISCUSSIONS 

The results have been measured on a cluster system Euler 
that belongs to the Alicante University in Spain.  The cluster 
is composed of 26 computing nodes. Each of these nodes has 
two processors Intel XEON X5660 hexacore @2.8GHz and 
48 GB RAM. In Euler, it is used Grid Engine function, 
general purpose Distributed Resource Management (DRM) 
tool. The scheduler component in Grid Engine supports a 
wide range of different compute scenarios.  Grid Engine is a 
facility for executing Unix-like batch jobs (shell scripts or 
binaries) on a pool of cooperating CPUs. Jobs are queued and 

executed remotely according to defined policies. 

For the image of 512x512 pixels the assembling time (ta) of 
the matrix and the system solving time (ts) (in seconds) for 
different number of projections and processors are 

summarized in Table 2. 

In the system matrix, the number of rows is obtained by 
multiplying the number of used sensors and angles and 
corresponds to the number of the projections used to 
reconstruct the image; the number of columns corresponds to 

the size of the reconstructed image (512x512 pixels).  

It can be seen that the system solving time does not vary very 
much for different number of processors used. The most time 
is spent to assemble the system matrix and depend noticeably 
on the number of processors. So, the results show the 

elements of scalability of the algorithm.   

 

Figure 2.  The scheme of the algorithm: to achieve better performance the 

assembly and the system solving are made in parallel 

TABLE II.  THE ASSEMBLING AND EXECUTION TIME (IN SECONDS) 

FOR DIFFERENT NUMBER OF PROJECTIONS AND PROCESSORS ON EULER 

CLUSTER 

Number of processors 

np = 2 np =4 np = 8 np =16 

 

System Matrix  

ta ts ta ts ta ts ta ts 

51200x262144 5.6 0.6 3.1 0.5 2.1 0.3 1.9 0.8 

102400x262144 11 1.4 6.2 0.9 4.3 0.8 3.7 1.2 

204800x262144 22 4.3 12 2.4 8.7 2.3 7.6 2.5 

 

The efficiency of the parallel image reconstruction can be 
appreciated in Fig. 3. The speed up of 1.8 has been achieved 

to reconstruct the image of 512x512 pixels. 

PETSc performance during the parallel reconstruction of an 
image (512x512 pixels) with the coefficient matrix of the size 
[204800x262144] is presented in Table 3. It can be seen that 
the parallel reconstruction allows reducing the memory usage 
and the number of operations on each node optimizing 
therefore the whole process. In Table 3 np corresponds to the 

number of used processors.  

Finally, Fig. 4 shows the images reconstructed in parallel 
from different number of equally spaced projections, and the 
quantitative results of quality comparison between original 

and reconstructed images are summarized in Table 4.  
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Figure 3.  Reconstruction time (in seconds) for the image of 512x512 
pixels from different number of projections and processors; the matrix 

dimensions corresponds: rows - to the number of the projections; columns - 

to the size (512x512 pixels) of the reconstructed image 

 To compare the images we use Mean Square Error (MSE) 

and Peak Signal to Nose Ratio (PSNR) functions [9]. 

TABLE III.  PETSC PERFORMANCE  ON EACH NODE IN THE PARALLEL 

RECONSTRUCTION OF IMAGES ON EULER CLUSTER 

 

 It is needed to mention that usually post processing 

procedure (as filtering) is applied to the reconstructed image 

in order to improve the quality. In this work we compare 

images right after the reconstruction stage without any 

filtering. 

In Table 4 the number of projections is calculated by 

multiplying the number of sensors and angles used to collect 

the projections. The results show that the iterative algorithms 

are capable to reconstruct images of a good quality from less 

number of projections.  

 

Figure 4.  Reconstructed images: a) original image; b), c), d) iterative 

reconstruction from 400, 200 and 100 angles at the iteration 12 when the 

given tolerance is achieved. 

TABLE IV.  QUALITY COMPARISON BETWEEN ORIGINAL AND 

RECONSTRUCTED IMAGES 

N projections MSE PSNR 

512x100 0.0132 66.9394 

512x200 0.0108 67.8119 

512x400 0.0095 68.3459 

V. CONCLUSIONS 

In this work the possibility of the image reconstruction 
with iterative algebraic methods from projections and the 
usage of the PETSc library for the optimization of the whole 
process have been analyzed.  The obtained results show the 
capacity of the algebraic methods to reconstruct images with 

low computational cost.  

The usage of the PETSc library facilitates a great deal and 
optimizes the whole work in the parallel reconstruction of 
images.  We expect more significant results in undergoing 
work of 3D image reconstruction when a huge amount of 

computing is involved.   
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 np = 2 np = 4 np = 8 np = 16 

Flops 2.90e+09 1.46e+08 7.30e+08 3.64e+08 

Flops/sec 1.18e+08 9.20e+07 6.10e+07 3.16e+07 

Memory 

usage 

(Kbytes) 

 

759727.9 

 

380391.5 

 

190271.4 

 

89649.4 

Mpi 

Messages 
2.70e+01 8.20e+01 1.80e+02 3.80e+02 
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