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B. The slice interpolation problem 

Let us assume that a volume has been imaged and a three 

dimensional (3D) image has been acquired as a series of 

transverse images at different values of the Z axis, which we 

ZLOO� FDOO� ³VOLFHV´�� 7KH� SUREOHP� RI� VOLFH� LQWHUSROation is 

defined as following [13]: given a number of slices at known 

equidistant positions along the Z axis, it is required to 

reconstruct the slice at an arbitrary Z coordinate. This is 

treated as a one-dimensional problem for each of the slice 

pixels and a number of convolution-based interpolation 

techniques are used to calculate the interpolated values ([4], 

[14], [15]). In order to quantitatively assess the accuracy of 

the Hermite interpolation kernels, we apply the kernels to 

interpolate a number of existing image slices and calculate 

the root mean squared error (RMSE) between the 

interpolated and the original slices [1]. For this reason, the 

3D image I is subsampled along the Z direction by a factor 

subN  of 2 or 3, as following: if a slice has index that is not 

an integer multiplier of subN  then this slice is removed. In 

order to suppress the aliasing effect introduced by 

subsampling, we prefilter the ground truth data, as described 

in [16, p399], using a 20-point low pass FIR filter with 

normalized cut-off frequency equal to 0.99
sub

NS . 

C. Computational complexity 

The Hermite interpolation in the case of 7
th

 degree 

polynomial ((10), (11) in [6]) with 6
th

 order of accuracy for 

the 1
st
 derivative ((15) in [6]) requires 22 arithmetic 

operations per signal interpolation (two convolutions with 4-

point kernels and the calculation of compact 1
st
 order 

derivative using 4-point convolution (right side of [6, (15)]) 

and IIR filtering with one pair of reciprocal roots (left hand 

side of (15) in [6]). The proposed Hermite kernel K4,2,6,3(z) 

requires 20 arithmetic operations, whereas it utilises 

derivatives up to 2
nd

 order and achieves substantially better 

RMSE than the 7
th

 degree dual Hermite kernel of [6]. One 

may construct a Hermite kernel with M=3 following the 

technique described in our work, at the expense of increasing 

the degree of the polynomial, but with the same number of 

arithmetic operations as the K4,2,6,3(z) kernel, provided that 

the 3
rd

 signal derivative is approximated with up to 6-point 

central differences. The number of arithmetic operations 

required for one signal value interpolation is shown for each 

interpolation method in the last column of Table II, assuming 

the use of look up tables for the kernel values. 
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Figure 1.  The proposed Hermite kernels and the reference kernels plotted in space (left column) and frequency domain (right column). In Fig. 1(d) the 

NHUQHOV¶�UHVSRQVH�LQ�WKH�SDVV�EDQG�LV�VKRZQ�LQ the zoomed inset��WR�DVVHVV�UHVSRQVH¶V�IODWQHVV. 
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D. Assessing the properties of the Hermite kernels 

The left column of Figure 1 shows the Hermite kernels as 

well as the other reference interpolation kernels in the time 

domain, whereas the right column plots the interpolation 

kernels in the frequency domain. Since the interpolation 

kernels are even functions, only the part for the non-negative 

independent variable is plotted. It can be observed (Fig 1a, 

1b) that the K4,2,6,3 kernel exhibits better characteristics than 

K4,1,6 and K4,1,4. All 3 Hermite kernels have more flat pass 

band and narrower transition band than the 4-point cubic 

kernels -CR (Fig 1b). The 6-point cubic interpolation kernel 

appears to exhibit marginally narrower transition band than 

the K4,1,6 kernel, but it is clearly outperformed by the 

proposed K4,2,6,3 Hemite kernel. As it can be observed in Fig. 

1d the proposed K4,2,6,3 kernel clearly outperforms the 3
rd

 

degree b-spline kernel, whereas in comparison to the 4rth 

degree b-spline interpolation, the proposed K4,2,6,3 kernel 

exhibits more flat frequency response in the pass band and 

marginally less narrow transition band (see zoomed inset of 

the curves in Fig. 1d). The K4,1,6 kernel is outperformed by 

both the B-spline kernels. These characteristics are 

compatible with the numerical results. 

TABLE I.  THE 3D MEDICAL DATA USED IN THIS STUDY 

MODALITY / 

ANATOMY 
LINES X COLUMNS 

X SLICES 
BITS/ 

voxel 
INTERSLICE 

DISTANCE (MM) 
MRI Head 256x256x128 16 1.2 

CT Chest 512x512x107 8 3 

CT Foot 125x255x183 8 0.13 

E. Data and interpolation experiments 

Results are presented from a variety medical imaging data 

sets and interpolation experiments that are described in 

Table I, The data are acquired by computer assisted 

tomography (CT) of the foot [19] and thorax, as well as 

Magnetic Resonance Imaging (MRI) of the head [19]. No 

special pre-processing has taken place, except for the 

antialiasing filtering for subsampling, as described above. 

For each dataset, we set up two interpolation experiments, by 

setting the slice subsampling factor subN  equal to 2 and 3. 

Results are averaged over 10 slices from each data set. 

A number of established interpolation techniques were 

selected to compare against the Hermit interpolation kernels: 

the Lagrange kernel [14] for 4 and 6 support positions, linear 

interpolation [12], 6-point cubic polynomial interpolation 

kernel (eq.(24) in [4]), the Catmull-Rom interpolation kernel 

(CR) [11], as defined in [18], identical to K212 in (3) and the 

Mitchell-Netravali kernel (MN), defined in [4, (26)] for 

b=c=1/3. From the B-spline family of generalized 

convolution interpolation [7], [8] we selected degree 3 and 4, 

since the later has similar computational complexity with the 

proposed K4,2,6,3(z) kernel. We have also included the 7
th

 

degree Hermite kernel with 6
th

 order first derivative from 

[6], since this was reported as the best performing Hermite 

kernel in that study. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

Table II shows the performance of the derived Hermite 

interpolation kernels in comparison to the other interpolation 

methods, in terms of RMSE, for all interpolation experiment. 

The number of arithmetic operations required for one signal 

value interpolation is also shown.The lowest RMSE in each 

experiment is depicted in bold. The interpolation RMSE was 

greatest for the experiments involving the MRI dataset, since 

it carried 16bits / voxel (see Table I).  

As expected, the K4,6,3,2 kernel outperforms the other 

Hermite kernels, since it employs 2nd order signal 

derivatives, with accurate approximation. Similarly, the K4,1,6 

kernel outperforms the K4,1,4. The K4,1,6 kernel, although it 

utilizes only the 1st order derivative of the signal, is very 

competitive among the non-generalized interpolation 

techniques. The proposed Hermite kernel K4,6,3,2 outperforms 

all reference kernels in terms of RMSE in all experiments, 

except for the 4th degree B-spline. Both the proposed K4,6,3,2 

kernel and the 4th degree B-spline achieve best performance 

in half of the experiments. One could increase the order of 

the signal derivative when constructing the Hermite kernel, 

without increasing its computational complexity, assuming 

that a look up table is used for the calculation of the values 

of the kernel. However, the degree of the kernel would also 

increase.  

 

TABLE II.  RMSE ACHIEVED BY THE DERIVED HERMITE KERNELS AND THE OTHER METHODS IN COMPARISON, FOR ALL INTERPOLATION EXPERIMENTS.  

METHOD CT CHEST MRI CT-FOOT NUM OF 

  Nsub=2 Nsub=3 Nsub=2 Nsub=3 Nsub=2 Nsub=3 OPERATIONS 

LAGRANGE 
4-point 17.129 22.591 129.19 173.64 3.905 4.985 8 

6-point 16.712 21.995 125.68 170.41 3.695 4.833 12 

LINEAR 2-point 19.457 24.335 140.39 184.26 4.566 5.484 2 

CUBIC 

POLYNOMIAL 

INTERP 

6-point 16.658 21.580 123.73 168.13 3.575 4.725 12 

4-point MN 18,240 23.337 133.35 177.99 4.156 5.192 8 

4-point CR 17.530 22.547 129.19 172.99 3.905 4.952 8 

HERMITE 

KERNELS 
K4,1,4 17.028 21.999 126.08 170.08 3.719 4.818 8 

K4,1,6 16.725 21.573 124.14 168.39 3.602 4.719 12 

K4,2,6,3 16.548 21.510 123.33 167.40 3.355 4.692 20 

B-SPLINE 
deg. 3 16.564 21.494 123.41 168.12 3.545 4.712 10 

deg. 4 16.278 21.168 121.32 167.52 3.434 4.699 18 

HERMITE [6] deg. 7, 6th 

order 1st deriv 
17.291 22.319 126.12 172.34 3.822 4.991 22 
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Figure 2.  The interpolation results for a random slice from (a) MRI Nsub=3 and CT Foot Nsub=3 (b). The images are arranged from left to right as follows: 

1st row: Original image, proposed K4,2,6,3, K4,1,6, 2
nd row: Linear, K4_1_4, cubic 4p (CR), 3rd row: Lagrange 4p, Lagrange 6p, Cubic 6p, last row B-spline deg 

3, B-spline deg 4, Hermite kernel deg=7 [6].

Figure 2 presents the interpolation results for a portion of a 

random transverse slice of the MRI study with Nsub=3 (a) and 

CT/Foot with Nsub =3 (b), for each of the interpolation 

methods. The RMSE values seem to correlate well with the 

observed reconstruction of fine image details. For instance 

the artifact that appears in all methods in Fig.2(b), marked by 

the arrow, is less extensive and less obvious in the case of 

K4,2,6,3 kernel. Small image details, which appear to be more 

accurately reconstructed with the proposed K4,2,6,3 kernel are 

also marked in Fig.2(a). Thus, the proposed kernel based on 

Hermite interpolation, presents an alternative interpolation 

technique, computationally almost equally expensive with 

the B-splines method that has the potential to prove useful 

for slice interpolation in 3D medical images. 
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