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Abstract— Univariate Hermite interpolation of the total
degree (HTD) is an algebraically demanding interpolation
method that utilizes information of the values of the signal to be
interpolated at distinct support positions, as well as the values
of its derivatives up to a maximum available order. In this work
the interpolation kernels of the univariate HTD are derived,
using several approximations of the 1st and 2nd order of
discrete signal derivative. We assess the derived Hermite
kernels in the task of medical image slice interpolation, against
several other well established interpolation techniques. Results
show that specific Hermite kernels can outperform other
established interpolation methods with similar computational
complexity, in terms of root mean square error (RMSE), in a
number of interpolation experiments, resulting in higher
accuracy interpolated images.

1. INTRODUCTION

Interpolation is very frequently applied in signal and
image processing, when it is required to calculate the value
of an image at a spatial or temporal location with non-integer
coordinates, in operations like resampling of signals and
image geometric transformation or change of image
pixelation. This work focuses on deriving the interpolation
kernels from the univariate Hermite total degree (HTD)
interpolation. We apply the derived kernels to slice
interpolation in three-dimensional (3D) medical images.
Biomedical imaging includes volume imaging in a slice by
slice manner. In most clinical cases the voxel of the original
3D image is not cubic, due to required time for image
acquisition and patient dosage concerns. However, many
image processing applications (such as spatial image
registration and visualization) require near isotropic image
resolution in all directions. In these cases, three dimensional
slice interpolation is applied [1]. HTD is one of the least
explored interpolation methods and it utilizes the values of
the function to be interpolated at a number of support points,
as well as the values of its derivatives up to an arbitrary
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maximum order. More formally, the univariate HTD is
described in the literature as following [2]: Let us assume
that the value of a function f{z) is given on n distinct,
arbitrarily spaced support pointszy,z,...,z, ;. Let us
assume further that the value of the derivatives of function f
is also known on each of the interpolant points, up to the

order of my,my,...,m respectively, where m; a non-

negative integer. If we denote the value of the derivative of
function f of order i at point z; as f’)(zj):a,-j, then there exists

n—1

one and only one interpolating polynomial #(z) of degree less

than 3", such that A0 (;)=ay. 0j=n-1, 0<i<m,-1. This

polynomial is explicitly given:

n—1 m;—lm;—i-1
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n—1
where Q(z) :H(z—zj )mj . In this work, we derive the

=0
Hermit interpolation kernels using the interpolating
polynomial (1) and test their performance in slice
interpolation using 3D medical images, which is essentially
treated as one-dimensional interpolation. The use of kernels
in interpolation with equidistant support points has attracted
considerable interest for signal interpolation ([3], [4], [5])
since it allows fast implementation of the interpolation
method, as well as efficient execution. Especially for the
HTD, given the relevant interpolation kernel, the
implementation of the method becomes much easier and its
application is also accelerated, since it becomes convolution-
based. In [6] a number of Hermite interpolation kernels are
derived up to 7t degree, by employing pairs of even and odd
interpolation kernels. The values of the signal first derivative
are calculated using an implicit scheme, based on IIR
filtering, similar to the calculation of generalized
interpolation coefficients as in [7] and [8]. Our work
employs a single kernel irrespectively of the maximum order
of signal derivative and achieves faster execution and smaller
interpolation error.

II. MATERIAL AND METHODS

A. Derivation of kernels for HTD interpolation

Using the traditional, convolution-based formulation of
signal interpolation (eq. (1) in [5]), the Hermite interpolating
polynomial of (1) may be written as
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where K(z) is the HTD interpolation kernel and ay; is the Oth
order derivative of the function to be interpolated at the jth
support point, as defined as in (1). The K(z) is usually a
piecewise continuous and differentiable polynomial. Eq.(1)
can be used to derive the family of Hermite interpolation
kernels, under the following assumptions: a) the support
points z,,z,...,z,; are equidistant and b) the same
maximum derivation order M is used for all support points,
ie.my=m=..=m_;,=M+1.
In order to express r(z) in the form of (2), we have to
approximate the i order signal derivative at jth support
position a; for 0<j<n-11<i<M using finite
differences. The proposed Hermite interpolation may be
considered within the general osculatory interpolation
scheme [9]. In this work, we utilized the approximations of
derivatives of discrete signals given in [10] (assuming
equidistant support positions) and we derive the Hermite
kernels by expressing the Hermite interpolating polynomial
of (1) in the form of (2). The accuracy of the derivative
approximation depends on the number of signal points that
are used. In the rest of the paper, we will indicate the
Hermite kernels by a number of subscripts in the following
order: the number of support points 7, the maximum order of
derivation M, the number of points for approximating the 1%
derivative and the number of points for approximating the
2™ derivative (where applicable).

1) Cubic Hermite Kernel for n=2, M=1 using 2-point
centered finite differences.
Since the number of support points is #n=2, we may set
z, =0,z =1 without restricting generality. For M=1 (1%
signal derivative), we followed an approach similar to [9]
that tries to reconciliate (2) with 7(z) in (1). Using the 2-point
centered finite differences for 1% derivative approximation

a 10:((101-(10!_1)/2 and a 1:((102-(100)/2, the interpolating
polynomial can be written as:
1 1 3 5
r(z) = —(523 . Ezjaoﬁl + (523 - 522 + lja00
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The 4 polynomials g, go, g1 and g, of the above relation
form the known Hermite cubic spline basis and they are

defined for ze[Ojl]. By appropriately changing variable

z=z+1 so that g, is defined in [1,2), z=z-1 so that g, is

defined in (-2,-1], and z=z-1 so that g, is defined in [-1,0),

we derive the following cubic Hermite kernel:
—%|z|3 +§|z|2 4]z +2, 127 <2

3)
S <2 4, 2| <1
2 2

This kernel is identical to the 4-point cubic parametric
kernel that is produced by setting its parameter to -0.5 in the

Catmull Rom kernel ((23) in [4]), [11], which is optimal
among cubic spline kernels [12].

2) Hermite Kernels with n=4, M=1

Let us consider the general case for n=4 support points and
1% derivative (M=1). In this case we may set
z,=—1,2z,=0,z,=land z, = 2, so that ze[O,l]. The

calculation of the 1 order derivative at the jth support point
is performed with up to 6-point central differences

a ;=6 (aO.j+1 Ay ) +¢ (aO,j+2 ;o ) +aG (aO,j+3 - aO,j—S) “4)
where ag;, a1, is the value of the signal and its 1% derivative
at the jth support position as defined as in (1) and ¢y, ¢, 3
are parameters of the derivative approximation. If the 4-point
central difference approximation is used for the Ist
derivative, by setting ¢ =8/12,c, =-1/12,¢, =0 in (4),
according to [10], kernel K4 ) 4 is derived:
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If we adopt the more accurate 6-point approximation of
signal 1% derivative using ¢,=3/4, ¢,=-3/20, ¢;=1/60 ([10],
eq(4)), then kernel K, ) ¢ is derived:
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3) Hermite Kernel with n=4, M=2

This family of kernels considers the 2™ order of signal
derivatives as well. The position of the support points is
given in the previous subsection. In addition to the 6-point
approximation of 1* derivative used above, we employ up to
5-point approximation of 2™ derivative, using:

a,, = dOaO,j +d, (aO,j+1 +a, 4 ) +d, (aO,j+2 + aO,j—Z) (M

where the 1% subscript of @ denotes the order of signal
derivative and the 2™ subscript the support point index, as
defined above and d,, d), d, are parameters of the signal ond
derivative approximation. We present the special case of the
Hermite kernel with n=4, M=2 and
¢ =3[4,¢, =-3/20,¢, =1/60, d,=-2,d,=1,d,=0,
thus using 6-point centred final difference approximation for
the 1% derivative and 3-point centred final difference
approximation for the 2" derivative [10].
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B. The slice interpolation problem

Let us assume that a volume has been imaged and a three
dimensional (3D) image has been acquired as a series of
transverse images at different values of the Z axis, which we
will call “slices”. The problem of slice interpolation is
defined as following [13]: given a number of slices at known
equidistant positions along the Z axis, it is required to
reconstruct the slice at an arbitrary Z coordinate. This is
treated as a one-dimensional problem for each of the slice
pixels and a number of convolution-based interpolation
techniques are used to calculate the interpolated values ([4],
[14], [15]). In order to quantitatively assess the accuracy of
the Hermite interpolation kernels, we apply the kernels to
interpolate a number of existing image slices and calculate
the root mean squared error (RMSE) between the
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Figure 1.

interpolated and the original slices [1]. For this reason, the
3D image [ is subsampled along the Z direction by a factor
N, of 2 or 3, as following: if a slice has index that is not

an integer multiplier of N, then this slice is removed. In

order to suppress the aliasing effect introduced by
subsampling, we prefilter the ground truth data, as described
in [16, p399], using a 20-point low pass FIR filter with
normalized cut-off frequency equal to 0.99 z/N

C. Computational complexity

The Hermite interpolation in the case of 7™ degree
polynomial ((10), (11) in [6]) with 6™ order of accuracy for
the 1% derivative ((15) in [6]) requires 22 arithmetic
operations per signal interpolation (two convolutions with 4-
point kernels and the calculation of compact 1% order
derivative using 4-point convolution (right side of [6, (15)])
and IIR filtering with one pair of reciprocal roots (left hand
side of (15) in [6]). The proposed Hermite kernel K4, 63(z)
requires 20 arithmetic operations, whereas it utilises
derivatives up to 2™ order and achieves substantially better
RMSE than the 7" degree dual Hermite kernel of [6]. One
may construct a Hermite kernel with M=3 following the
technique described in our work, at the expense of increasing
the degree of the polynomial, but with the same number of
arithmetic operations as the Kj,63(z) kernel, provided that
the 3" signal derivative is approximated with up to 6-point
central differences. The number of arithmetic operations
required for one signal value interpolation is shown for each
interpolation method in the last column of Table II, assuming
the use of look up tables for the kernel values.
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The proposed Hermite kernels and the reference kernels plotted in space (left column) and frequency domain (right column). In Fig. 1(d) the

kernels’ response in the pass band is shown in the zoomed inset, to assess response’s flatness.

4371



D. Assessing the properties of the Hermite kernels

The left column of Figure 1 shows the Hermite kernels as
well as the other reference interpolation kernels in the time
domain, whereas the right column plots the interpolation
kernels in the frequency domain. Since the interpolation
kernels are even functions, only the part for the non-negative
independent variable is plotted. It can be observed (Fig la,
1b) that the K4, ¢ 5 kernel exhibits better characteristics than
K16 and K, ;4. All 3 Hermite kernels have more flat pass
band and narrower transition band than the 4-point cubic
kernels -CR (Fig 1b). The 6-point cubic interpolation kernel
appears to exhibit marginally narrower transition band than
the K, ;¢ kernel, but it is clearly outperformed by the
proposed K, ;3 Hemite kernel. As it can be observed in Fig.
1d the proposed K, 45 kernel clearly outperforms the 3™
degree b-spline kernel, whereas in comparison to the 4rth
degree b-spline interpolation, the proposed Kj,e3; kernel
exhibits more flat frequency response in the pass band and
marginally less narrow transition band (see zoomed inset of
the curves in Fig. 1d). The K, ;¢ kernel is outperformed by
both the B-spline kernels. These characteristics are
compatible with the numerical results.

TABLE L.  THE 3D MEDICAL DATA USED IN THIS STUDY
MODALITY / LINES X COLUMNS BiTs/ INTERSLICE
ANATOMY X SLICES voxel DISTANCE (MM)
MRI Head 256x256x128 16 1.2
CT Chest 512x512x107 8 3
CT Foot 125x255x183 8 0.13
E. Data and interpolation experiments

Results are presented from a variety medical imaging data
sets and interpolation experiments that are described in
Table I, The data are acquired by computer assisted
tomography (CT) of the foot [19] and thorax, as well as
Magnetic Resonance Imaging (MRI) of the head [19]. No
special pre-processing has taken place, except for the
antialiasing filtering for subsampling, as described above.
For each dataset, we set up two interpolation experiments, by
setting the slice subsampling factor N, equal to 2 and 3.

Results are averaged over 10 slices from each data set.

A number of established interpolation techniques were
selected to compare against the Hermit interpolation kernels:
the Lagrange kernel [14] for 4 and 6 support positions, linear
interpolation [12], 6-point cubic polynomial interpolation
kernel (eq.(24) in [4]), the Catmull-Rom interpolation kernel
(CR) [11], as defined in [18], identical to K,;, in (3) and the
Mitchell-Netravali kernel (MN), defined in [4, (26)] for
b=c=1/3. From the B-spline family of generalized
convolution interpolation [7], [8] we selected degree 3 and 4,
since the later has similar computational complexity with the
proposed Kj,63(z) kernel. We have also included the 7h
degree Hermite kernel with 6™ order first derivative from
[6], since this was reported as the best performing Hermite
kernel in that study.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Table II shows the performance of the derived Hermite
interpolation kernels in comparison to the other interpolation
methods, in terms of RMSE, for all interpolation experiment.
The number of arithmetic operations required for one signal
value interpolation is also shown.The lowest RMSE in each
experiment is depicted in bold. The interpolation RMSE was
greatest for the experiments involving the MRI dataset, since
it carried 16bits / voxel (see Table I).

As expected, the K,¢3, kernel outperforms the other
Hermite kernels, since it employs 2nd order signal
derivatives, with accurate approximation. Similarly, the Ky ;¢
kernel outperforms the Ky;4. The K, ;¢ kernel, although it
utilizes only the 1st order derivative of the signal, is very
competitive among the non-generalized interpolation
techniques. The proposed Hermite kernel K, 63, outperforms
all reference kernels in terms of RMSE in all experiments,
except for the 4th degree B-spline. Both the proposed K3,
kernel and the 4th degree B-spline achieve best performance
in half of the experiments. One could increase the order of
the signal derivative when constructing the Hermite kernel,
without increasing its computational complexity, assuming
that a look up table is used for the calculation of the values
of the kernel. However, the degree of the kernel would also
increase.

TABLE II. RMSE ACHIEVED BY THE DERIVED HERMITE KERNELS AND THE OTHER METHODS IN COMPARISON, FOR ALL INTERPOLATION EXPERIMENTS.
METHOD CT CHEST MRI CT-Foot NUM OF
Naw=2 | Nap=3 Naw=2 | Nap=3 Nap=2 | Nap=3 OPERATIONS

- 4-point 17.129 | 22591 | 129.19 | 173.64 | 3.905 | 4985 8
6-point 16712 | 21.995 | 12568 | 170.41 | 3.695 | 4833 12

LINEAR 2-point 19457 | 24335 | 14039 | 18426 | 4.566 | 5484 2
CUBIC 6-point 16658 | 21.580 | 123.73 | 168.13 | 3575 | 4125 12
POLYNOMIAL | 4-point MN | 18,240 | 23.337 | 133.35 | 177.99 | 4.156 | 5.192 8
INTERP 4point CR | 17.530 | 22.547 | 129.19 | 17299 | 3.905 | 4952 8
HERMITE Ky 17028 | 21.999 | 126.08 | 170.08 | 3.719 | 4818 8
KERNELS Kirs 16725 | 21.573 | 124.14 | 16839 | 3.602 | 4.719 12
Kines 16548 | 21510 | 12333 | 167.40 | 3.355 | 4.692 20

BoSPLINE deg. 3 16564 | 21494 | 12341 | 16812 | 3.545 | 4712 10
i deg. 4 16.278 | 21.168 | 121.32 | 16752 | 3434 | 4.699 18

th
HERMITE[6] | deg. 7,67 117591 | 22319 | 12612 | 17234 | 3822 | 4991 2
order 1™ deriv
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(a)

(b)

Figure 2. The interpolation results for a random slice from (a) MRI Ny,;,=3 and CT Foot Ny,,=3 (b). The images are arranged from left to right as follows:
1% row: Original image, proposed K263, Ka.1.6, 2™ row: Linear, K4 ; 4, cubic 4p (CR), 3™ row: Lagrange 4p, Lagrange 6p, Cubsic 6p, last row B-spline deg
3, B-spline deg 4, Hermite kernel deg=7 [6].

Figure 2 presents the interpolation results for a portion of a
random transverse slice of the MRI study with Ng;,=3 (a) and
CT/Foot with Ny, =3 (b), for each of the interpolation
methods. The RMSE values seem to correlate well with the
observed reconstruction of fine image details. For instance
the artifact that appears in all methods in Fig.2(b), marked by
the arrow, is less extensive and less obvious in the case of
K565 kernel. Small image details, which appear to be more
accurately reconstructed with the proposed Kj ;63 kernel are
also marked in Fig.2(a). Thus, the proposed kernel based on
Hermite interpolation, presents an alternative interpolation
technique, computationally almost equally expensive with
the B-splines method that has the potential to prove useful
for slice interpolation in 3D medical images.
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