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Abstract— A novel saliency-guided approach is proposed for
improving the acquisition speed of compressive fluorescence
microscopy systems. By adaptively optimizing the sampling
probability density based on regions of interest instead of the
traditional unguided random sampling approach, the proposed
saliency-guided compressive fluorescence microscopy approach
can achieve high-quality microscopy images using less than half
of the number of fluorescence microscopy data measurements
required by existing compressive fluorescence microscopy sys-
tems to achieve the same level of quality.

I. INTRODUCTION

Fluorescence microscopy has broad applications in molec-
ular studies of individual proteins and living cells [7]. A
key benefit of fluorescence microscopy over those based on
optical density changes and chemiluminescent emission is its
greater sensitivity and range [7]. A popular fluorescence mi-
croscopy approach is scanning confocal microscopy, where
samples are scanned by a laser to reconstruct an image [6].
However, such an approach has been traditionally limiting in
terms of acquisition speed due to the image being acquired
pixel by pixel.

To address this limitation, the concept of compressive
fluorescence microscopy (CFM) was proposed to greatly in-
crease acquisition speed while preserving high reconstruction
quality [10], [11]. CFM is based around compressive sensing
(CS) [4], [5], which allows for greatly reduced fluores-
cence microscopy acquisition times by accurately recovering
the image from sparse, sub-Nyquist measurements. Wu et
al. [11] illustrated the applicability of CFM for fast optical-
sectioning imaging, while Studer et al. [10] illustrated its
applicability for fast hyperspectral imaging.

Much of the research in CFM systems focuses on hardware
design and reconstruction design, thus leaving the design of
the sampling procedure largely unexplored. However, given
that many applications of fluorescence microscopy involve
regions of interest with structured characteristics, the design
of the sampling procedure can have a tremendous effect on
acquisition speed and reconstruction quality.

Motivated by the importance of the sampling procedure
on CFM performance, the main contribution of this paper
is the introduction of a saliency-guided compressive fluo-
rescent microscopy system, which incorporates a saliency-
guided sparse measurement model [9] that was developed to
significantly improves reconstruction quality and acquisition
speed for situations where regions of interest have structured
characteristics.
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II. SALIENCY-GUIDED CFM FRAMEWORK

Existing CFM systems employs a traditional sampling
scheme that sample the entire scene in the same manner
regardless of the underlying data. However, such an approach
is limited for many practical applications of fluorescence
microscopy, which involve distinct regions of interest with
highly salient structural characteristics. Given that such re-
gions are of greater interest for analysis purposes, one is
motivated to obtain higher quality reconstructions for these
regions than the background regions. To tackle this issue with
traditional sampling approaches, we propose the optimization
and integration of the state-of-the-art saliency-guided sparse
measurements model [9] into the CFM imaging framework.

Let the scene being imaged via fluorescence microscopy
contain M × N sampling locations organized in a finite,
rectangular lattice ΩM×N :

ΩM×N = {(m,n) | m = 0, . . . ,M − 1, n = 0, . . . , N − 1}
(1)

Given such a lattice, let us partition ΩM×N into three
complementary sets ΩD, ΩS and ΩcDS (ΩD represents highly
salient locations, ΩS represents sparse sampling, and ΩcDS
represent non-sampled locations) such that

ΩM×N = ΩD∪ΩS ∪ΩcDS , with ΩD∩ΩS ∩ΩcDS = ∅, (2)

whose cardinalities are equal to #(ΩD + ΩS) = T and
#ΩcDS = MN − T , respectively.

Since ΩD represents highly salient locations, ΩD is de-
fined based on a function Γ(m,n) that quantifies saliency at
a given location (m,n):

Γ(m,n) =

{
1, if (m,n) ∈ ΩD
0, if (m,n) /∈ ΩD

(3)

Since regions of interest in many CFM applications are
characterized by large spatial intensity variations (which
relates to structural characteristics), one can define a saliency
function Γ(m,n) (3) as:

Γ(m,n)→ ΩD, if S(m,n) > ta, ∀(m,n) (4)

where
S(m,n) = ‖Iµ − I(m,n)‖ (5)

where Iµ is the mean, I(m,n) is the corresponding vector
of the Laplacian of the Gaussian filtered data, and ta is the
threshold value (set at two times the mean saliency S(m,n)
of a given data [1]).

Now, with the fluorescence microscopy measurements
representing discrete intensity quantities f : ΩM×N → R,
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given a collection of K ≤ NM sampling functions {ϕk}Kk=1,
the linear measurements of f can be expressed as:

yk = 〈f, ϕk〉+ ek =

M−1∑
m=0

N−1∑
n=0

f(m,n)ϕk(m,n) + ek, (6)

where k = 1, 2, . . . ,K and ek represents the combined effect
of measurement and quantization noises.

In the proposed saliency-guided CFM framework, since
there are no measurements in ΩcDS and the sampling distri-
butions of ΩD and ΩS are different, the sampling function
at each location can be defined by:

ϕk(m,n) =

 ϕDk (m,n), if (m,n) ∈ ΩD
ϕSk (m,n), if (m,n) ∈ ΩS

0, if (m,n) ∈ ΩcDS

(7)

where ϕDk (m,n) are realizations of a Gaussian distributed
random variable x:

pD(x | µ, σ) = η(x|µ, σ2), (8)

and ϕSk (m,n) are realizations of a Gauss-Bernoulli dis-
tributed random variable x:

pS(x | π, σ) = π δ(x) + (1− π)N (x|0, σ2), (9)

where pS = 0 with probability π and pS is Gaussian
distributed with probability (1− π). In this implementation,
µ = 0, σ = 1, and π was selected to be 0.9 (represents
90% compression rate or 10% sampling) as the maximum
compression rate where CFM can still produce reasonably
reconstructed images.

III. IMPLEMENTATION

Based on the above theory, the saliency-guided CFM
framework can be implemented in two phases. In the first
phase, a traditional sampling procedure is employed where
f is sampled sparsely via ϕSk (m,n) with the pdf pS (9) using
only 10% of the sampling locations. The saliency function
Γ(m,n) (4,5) is then employed to determine subset ΩD
based on the fluorescence microscopy image reconstructed
from these samples.

In the second phase, f is sampled by ϕDk (m,n) with pdf
pD(8) to sample highly salient regions of interest with greater
density. The samples from the two subsets ΩD and ΩS
are then combined and used to reconstruct the fluorescence
microscopy image at a higher accuracy than that achieved in
the first phase.

To reconstruct the fluorescence microscopy image from
the acquired samples, a `1-based total variation minimization
approach was employed:

arg min
f

{
λ‖f‖TVl1

+
1

2
‖Φf̄ − ȳ‖22

}
(10)

where ‖ · ‖TVl1
denotes the `1-based anisotropic total

variation norm defined by [2], and can be solved using
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
approach [3], [2].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Two sets of experiments were performed to investigate
and evaluate the capabilities of the proposed saliency-guided
compressive fluorescence microscopy (SGCFM) approach
for improving reconstruction quality over existing unguided
random sampling approaches employed in existing CFM
systems. In the first set of experiments, the reconstruction
performance of SGCFM is evaluated at different compression
rates to study the quality gains in a systematic and quantita-
tive manner. It is important to note that an increase in com-
pression rate results in a decrease in the number of samples
used for reconstruction, and hence an decrease in acquisition
time. In the second set of experiments, the reconstruction
performance of SGCFM is evaluated qualitatively using real
noisy fluorescence microscopy data. For comparison pur-
poses, the traditional unguided sampling strategy employed
in existing CFM systems [10], [11] is also evaluated as a
baseline reference.

A. Experimental Setup

Both experiments were performed with existing fluores-
cence microscopy data sets [8]. The data set used for the
first set of experiments is YRC PIR ID: 64, which is largely
noiseless and has the following imaging settings: exposure
time: 0.05s, pixel size: 0.12758 µm × 0.12758 µm, objective:
100× and image size 512×512. An example of fully sampled
data (where each sampling location is measured), and the
corresponding synthetic noise contaminated version used in
the first set of experiments, are shown in Fig. 1.

In the second set of experiments, the data set used is YRC
PIR ID: 8565, which is heavily contaminated by noise and
has the following imaging settings: exposure time: 0.40 s,
pixel size: 0.12758 µm × 0.12758 µm, objective: 100× and
image size 512×512. An example of noisy fully sampled
data used in the second set of experiments is shown in Fig. 2.

B. Experiment 1 - compression rate sensitivity tests

In the first set of experiments, the reconstruction perfor-
mance of SGCFM was evaluated using a comprehensive
parametric analysis approach, where the signal-to-noise ratio
(SNR) of the reconstructed fluorescence microscopy image
was computed for a wide range of compression rates, where
the compression rate ρ is defined as one minus the ratio
between the number of sampling locations measured and
the total number of sampling locations. As such, the higher
the compression rate, the fewer measurements are made and
the faster the acquisition speed. For illustrative purposes,
the SNR was measured for the reconstructed results of
fluorescence microscopy images (contaminated by Gaussian
noise with noise with a standard deviation that is 3% of the
dynamic range) across the compression rate range of 0% -
80% (as illustrated in Fig. 3).

Fig. 3 shows that the proposed SGCFM approach can
achieve similar SNR performance as traditional CFM ap-
proaches using significantly fewer samples, which translates
to significant increases in acquisition speed. For example,
the SGCFM approach achieves an SNR of 25 dB using
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(a)

(b)

Fig. 1. Example of (a) fully sampled fluorescence microscopy image, and
(b) the corresponding noise contaminated version (standard deviation = 3%)
used in the first set of experiments.

Fig. 2. An example of noisy fully sampled data used in the second set of
experiments.

just 39% of the samples (61% compression rate), while
the traditional sampling strategy employed in existing CFM
systems requires 87% of the samples (13% compression rate)
to achieve similar performance. Another way of looking at

Fig. 3. SNR vs. compression rate for reconstruction results of fluorescence
microscopy images contaminated by Gaussian noise with noise with a
standard deviation that is 3% of the dynamic range

it is that the proposed SGCFM approach requires less than
half (44%) of the samples needed by traditional sampling
approaches to achieve the same level of performance.

For visual inspection purposes, examples of fluorescence
microscopy images reconstructed from Gaussian noise-
contaminated measurements are shown in Fig. 4. It can be
seen that the fluorescence microscopy images reconstructed
using the proposed SGCFM approach captures significantly
more important detail than that reconstructed using the
traditional unguided sampling strategy. This is particularly
noticeable within the individual cells, where weaker yet
important structural details are noticeably better captured
in the fluorescence microscopy images produced using the
proposed SGCFM approach.

C. Experiment 2 - Noisy fluorescence microscopy recon-
struction tests

In the second set of experiments, a qualitative investiga-
tion is made into reconstruction performance for real-world
situations where the fluorescence microscopy measurements
that are heavily contaminated by real-world noise. As can be
seen from Fig. 5, the proposed SGCFM approach noticeably
outperforms the traditional sampling approach employed
in existing CFM systems in terms of image quality, with
significant improvements in structural definition in important
regions of interests.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the concept of saliency-guided
compressive fluorescence microscopy for the purpose of
improving acquisition speed and reconstruction quality in
CFM systems. The saliency-guided CFM framework adap-
tively optimizes the sampling probability to the regions of
interest rather than the common unguided random sampling
used in existing CFM systems. The performance of the
proposed SGCFM approach was demonstrated to provide
improved fluorescence microscopy data acquisition speed
and reconstruction quality in experiments with synthetic
noise-contaminated measurements, as well as experiments
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(a) Traditional unguided sampling reconstruction

(b) SGCFM reconstruction

Fig. 4. Example reconstruction results for first set of experiments at 75%
compression rate and 3% noise level

with real noise-contaminated measurements. As the proposed
SGCFM framework can act as the foundation for future
research in CFM, it would be interesting to investigate
the integration of different alternatives for optimizing the
sampling probability density functions in the interest of
further improving acquisition speed and image quality.
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