
  

 

 

 

Abstract—Obesity prevention and treatment as well as 

healthy life style recommendation requires the estimation of 

everyday physical activity. Monitoring posture allocations and 

activities with sensor systems is an effective method to achieve 

the goal. However, at present, most devices available rely on 

multiple sensors distributed on the body, which might be too 

obtrusive for everyday use. In this study, data was collected from 

a wearable shoe sensor system (SmartShoe) and a decision tree 

algorithm was applied for classification with high computational 

accuracy. The dataset was collected from 9 individual subjects 

performing 6 different activities—sitting, standing, walking, 

cycling, and stairs ascent/descent. Statistical features were 

calculated and the classification with decision tree classifier was 

performed, after which, advanced boosting algorithm was 

applied. The computational accuracy is as high as 98.85% 

without boosting, and 98.90% after boosting. Additionally, the 

simple tree structure provides a direct approach to simplify the 

feature set.  

 

I. INTRODUCTION 

      The World Health Organization (WHO) predicts that 
overweight and obesity may soon become the most significant 
cause of poor health replacing more traditional public health 
concerns, such as under-nutrition and infectious diseases [1]. 
Obesity may have a significant effect on health, leading to 
reduced life expectancy and increased health problems 
including heart disease, type 2 diabetes, obstructive sleep 
apnea, osteoarthritis and certain types of cancers [2]. In 
addition to these health impacts, obesity may cause many 
social stigmatization problems. Obesity is due to a sustained 
positive energy balance and is typically coupled with low 
level of physical activity [4] [5]. In other words, obesity may 
be caused by excessive food energy intake and lack of 
physical activity. A sedentary lifestyle plays a significant role 
in obesity. The amount of work that is not physically 
demanding is increasing worldwide. Moreover, there appear 
to be declines in levels of physical activity in walking due to 
mechanized transportation, and declines in energy 
expenditure in housework due to laborsaving technology at 
home. Studies show that there is an association between 
television viewing time and the risk of obesity [6]. Therefore, 
an accurate monitoring of physical activity directly helps in 
the research of  obesity. Monitoring of everyday life activities 
may also provide detailed recommendations to people who are 
seeking a healthy lifestyle.  
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      For monitoring physical activities and allocations of 
human beings, various devices and systems were proposed by 
different research groups. For example, Bao and Intille [7] 
mounted accelerometers on the wrist, upper arm, hip, ankle 
and thigh, with the evaluation of a single best sensor location. 
They achieved an  accuracy of 84% in the activity recognition 
for 20 different activities. Pirttikangas et al. [8] attached 
accelerometers  to left and right wrists, right thigh and a 
necklace, with a recognition accuracy of 93% for 17 different 
activities. However, those devices rely on sensors distributed 
on the body might be too obtrusive for everyday use. To 
develop the systems to be more convenient for real-life usage, 
Zhang et al. [9] proposed a single tri-axial accelerometer 
placed on the waist and achieved a classification accuracy of 
80%. Long et al. [10] proposed a 3D-accelerometer in a smart 
phone and achieved a recognition accuracy of 82.8%. A 
wearable non-obtrusive device to reach high classification 
accuracy in detecting posture activities still remains a desire 
and challenge.  

      Various algorithms have been applied in physics activity 
classification, such as Support Vector Machines [11] [12], 
Artificial Neural Network (ANN) [13], Hidden Markov 
Model (HMM) [14], Continuous Activity Recognition (CAR) 
algorithm [10]. Researchers are still seeking for an optimal 
solution that combines a computational effective algorithm 
and an advanced sensor system.  

      In this study, data was acquired from a wearable shoe 
sensor system (SmartShoe) developed previously by our 
group [15]. After statistical feature computation from sensor 
signals, decision tree algorithm with boosting [17] was used 
for classification. This approach reached high classification 
accuracy. The simple tree structure provided a direct approach 
to simplify the feature set and this can help improving 
computational efficiency.  

II. METHODS 

A. Wearable shoe sensors and data collection 

      The sensor system embedded into the shoes contains 
sensors to collect plantar pressure data and heel acceleration 
data. For each shoe, there are five force-sensitive registers 
integrated in a flexible insole,  positioned under heel, heads of 
metatarsal bones, and the hallux. With this configuration, 
differentiation of the most critical parts of the gait cycle, such 
as heel strike, stance phase and toe-off can be performed. The 
motion information is provided by a 3-D accelerometer 
positioned on the back of each shoe. This wireless sensor 
system is lightweight, minimally obtrusive and with  advanced 
power saving strategies [15].  
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      Data collection was performed on nine human subjects, 
including three males and six females. Based on self-report, 
subjects were weight stable and healthy nonsmokers. The 
summary of subjects’ characteristics is shown in Table I. In 
the data collection process, each individual wore the 
sensor-equipped shoes with size (US) ranged from 9.5-11 for 
men and from 7-9 for women for a duration of 2.5-3h visit. A 
total of 11h 36min of data were recorded for six major 
posture/activity classes. The description of the six major 
posture/activity classes is shown in Table II.  

TABLE I.  THE CHARACERISTICS OF THE NINE RECRUITED HUMAN 

SUBJECTS 

Physical features Range Mean Standard deviation 

Age (years) 18-31 27.3 4.3 

Body weight (kg) 55.6-100.9 70.5 15.8 

Body mass index (kg/m2) 18.1-39.4 25.2 6.5 

TABLE II.  DESCRIPTION OF THE SIX POSTURE/ACTIVITIES CLASSES 

Activities Description (Total duration) 

Sitting Including sitting motionless and with fidgeting (1 h 47 min) 

Standing Including standing motionless and with fidgeting (1 h 47 min) 

Walking/Jogging Includes several speeds, slopes, and load conditions (5 h 57 min) 

Ascending stairs (18 min) 

Descending stairs (17 min) 

Cycling Includes two load conditions: 50rpm and 75rpm (1h 30min) 
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Figure 1.  Plots of raw dataset from  pressure sensor I and the computed 

standard deviation from the raw data. 

 B. Data processing—feature computation 

Pressure and acceleration data were sampled at 25 Hz by a 

12-bit A/D converter and sent over a wireless communication 

to the base computer. In two seconds, number of samples N 

was 50, and data collected followed: 50 samples * (5 pressure 

sensor readings / sample + 3 accelerometer sensor readings / 

sample) = 400 sensor readings for each shoe. Feature 

computation was performed on continuous two seconds data 

readings. The features are, mean, standard deviation, entropy, 

variance, maximum value, number of mean crossings (NMC), 

mean absolute deviation (MAD). Number of mean crossings, 

is the count of times that the curve composed by the sample 

values crosses the mean value. Mean absolute deviation, is the 

mean of the absolute deviations of a set of data about the 

data’s mean [16]. Thus, the feature number is 7, the number of 

computed features in 2 seconds will be as the followings: 7 

features / sensor * 8 sensors = 56 features. Fig. 1 shows raw 

dataset from pressure sensor I and the computed standard 

deviation. 

 

C. The classifier—C5.0 decision tree 
      Decision Tree [17] is a hierarchical model that recursively 
separates the input space into class regions. The final decision 
making model is a tree-like structure which composes of 
decision nodes and leafs. Each node has a test function. Given 
a node, a test function determines which branch is taken. This 
process is repeated until one of the leaves is reached.  

      In decision tree learning,  Quinlan [17] invented Iterative 
Dichotomiser 3 (ID3) algorithm. Entropy and information 
gain are calculated in the process of generating a decision tree. 
The algorithm can be summarized as following: 

 Take all unused attributes and count their entropy 

concerning test samples 

 Select attribute for which entropy is minimum  

(This means the information gain is maximum) 

 Make node containing that attribute in the tree 

 
      ID3 is a decision tree classifier, which can deal with 
discrete input values. C4.5 [18] is an extension of ID3. C4.5 
can handle both continuous and discrete attributes. It creates a 
threshold and then splits the list into two groups, higher 
attribute values and lower attribute values. Quinlan went on to 
create C5.0, which offers a number of improvements than 
C4.5. Other than speed improvement and more memory 
efficiency, C5.0 can generate significant smaller decision 
trees and supports boosting which improves the trees and 
delivers higher accuracy. 

      In this study, C5.0 was applied  on the computed features. 
First, the dataset was split into training and validation subsets. 
The training and validation subsets were produced by 
repeated random sub-sampling. We randomly selected 50% of 
the dataset  for training and the remaining 50% for validation. 
The results were generated from the validation data. Each 
posture/activity was represented in the same proportion  in 
both training and validation sets.  

      Then  the tree structure was composed. The training and 
validation sets each contained 56 * ( n / 2 ) values, where 56 is 
the number of features calculated from 2 second data 
collection from the 8 sensors and n is the total monitoring 
time. The leaves (attributes) of the decision tree are defined as 
the six posture activity classes—“sit”, “stand”, “walk”, 
“cycle”, “stairs-up” and “stairs-down”. The class labels were 
kept in the dataset files at the end of each feature vector. The 
decision nodes of the decision tree were the thressholds 
obtained from the feature values.  
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      Six-class individual models were built in the study. 
Individual model performs training and validation on the same 
experimental subject. The individual models are the best fit to 
the individual traits and thus represent the baseline of 
accuracy for comparison.   

D. Advanced boosting option—to increase classification 

accuracy 
 Advanced boosting option was applied in C5.0 

classification tool for increased accuracy. The tool generated 
ten different decision trees as simple classifiers, then 
integrated them and increased the performance through 
boosting. 

III.  RESULTS 

      Fig. 2 shows an decision tree structure obtained from the 
classification process. It is obtained from dataset from subject 
2. The tree leaves are the posture activities and the connecting 
nodes are values which are the thresholds from the computed 
features from data collected by eight sensors.  

Decision tree: 

 

mean absolute deviation_pre2 <= 635: 

: . . . entropy_acc1 > 28050: cycle (158) 

:       entropy_acc1<= 28050: 

:       : . . . mean_pre4 <= 1057: sit (180) 

:               mean_pre4 > 1057: 

:               : . . . max_pre4 <= 1562: sit (3) 

:                       max_pre4 > 1562: stand (167) 

mean absolute deviation_pre2 > 635: 

: . . . max_acc3 > 3686: stairs_down (28) 

        max_acc3 <= 3686: 

        : . . . mean_acc1 >1225: 

                : . . . entropy acc1 <= 36264: walk (3) 

                :       entropy acc1 >36264: stairs_up (16) 

                mean acc1 <= 1225: 

                : . . . mean_acc2 <= 2038: 

                        : . . . num of mean crossing acc1 <= 14: stairs_up (6) 

                        :       num of mean crossing acc1 > 14: walk (5) 

                        mean_acc2 > 2038: 

                        : . . .mean acc1 <= 1185: walk (586) 

                               mean acc1 > 1185: 

                               : . . . num of mean crossing_pre2 <= 3: walk (40) 

                                       num of mean crossing_pre2 >3: stairs_up (3) 

Figure 2.  Decision tree generated for classification from subject 2. 

 

      In this decision tree figure, the connection nodes are 
displayed as feature names followed by sensor names. For 
example, “pre 2” means pressure sensor 2, and “acc1” means 
accelerometer dimension 1, There are feature names prior of 
the sensor names. Accelerometer sensor demension 1 to 3 
means anterior–posterior, medial–lateral, and 
superior–inferior axes of accelerometer. Pressure sensor 1 to 5 
means heel pressure sensor, the fifth, third, and first metatarsal 
head sensors, and the hallux sensor, respectively [15]. “Max” 
means maximum value, and “num of mean crossings” means 
number of mean crossings. The first two lines of the decision 
tree can be read as: if the mean absolute deviation from 
pressure sensor 2 is not greater than 635, and entropy from 
accelerometer dimension 1 is greater than 28050, then the 
posture activity is classified as “cycle”. Among all the feature 
vectors, there are 158 of them being classified as “cycle”. 

Table III shows the attribute usages in percentage in the 
decision tree above. It is obvious that not all features are 
involved nor all sensors are used.  

This table shows that among all the feature vectors  mean 
absolute deviation from pressure sensor 2 is used for all the 
vectors, while maximum value from accelerometer 3 is used 
with a rate of 57%. All other features that are not listed in 
Table III are not used during the classification. 

TABLE III.  ATTRIBUTE USAGE FROM THE DECISION TREE 

 

Attribute name Attribute usage 

mean absolute deviation_pre 2 100% 

max_acc 3 57% 

mean_acc 1 55% 

mean_acc 2 54% 

entropy acc 1 44% 

mean_pre 4 29% 

max_pre 4 14% 

Num of mean crossing_pre 2 4% 
 

      Table IV shows the number of features and number of 
sensors that are used for each subject, after which averages are 
calculated and shown. For the features, there are a total of 56 
of them. Obviously, the number of features that involved in 
classification is much less than the total. For the sensors, there 
are a total of 5 sensors of them (3D accelerometer sensor is 
viewed as a single sensor here). The experimental results 
provide potential suggestions for sensor reduction and 
optimization. 

TABLE IV.  NUMBER OF FEATURES AND  SENSORS USED IN THE 

CLASSIFICATION 

Subject 1 2 3 4 5 6 7 8 9 Average 

N(feature) 8 9 7 10 8 8 11 8 11 10 

N(sensors) 4 3 4 5 3 4 5 3 4 4 

 

      The above table shows that the usage of the features and 
the sensors are only a subset of what we have . As  there are 56 
features in total, the ratio of number of features that are 
involved is 10/56=17.9%. The ratio of number of sensors that 
are involved is 4/6=66.7%. 

      Fig. 3 is a confusion matrix obtained from the 
classification process. It is from suject 2. The test data 
contains 1195 cases. Overall the classification accuracy is 
high, with an error  of 1.2%. However, there are still some 
misclassifications. For example, 4 cases of  “stairs up” are 
misclassified as “cycle”.  

Evaluation on test data (1195 cases): 

 

Decision Tree:    Size     Errors 

                            12        14 (1.2%) 

 

Confusion matrix: 

(a) (b) (c) (d) (e) (f)  classified as 

176 1     (a): class sit 

4 185 1    (b): class stand 

  639 1   (c): class walk 

   141   (d): class cycle 

  4  26  (e): class stairs_up 

  3   14 (f): class stairs_down 

 

Figure 3.  Confusion matrix from classification for subject 2.

4355



  

TABLE V.  COMPUTATIONAL ACCURACY OF THE CLASSIFIER 

 

Subject 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

Average 

Accuracy (%) 

Without boosting 

 

98.5 

 

98.8 

 

98.2 

 

99.0 

 

99.6 

 

98.8 

 

99.0 

 

99.1 

 

98.1 

 

98.85 

Accuracy (%) 

With boosting 

 

98.8 

 

98.7 

 

98.4 

 

99.0 

 

99.7 

 

99.2 

 

99.0 

 

99.5 

 

98.1 

 

98.90 

 

Table V shows the information about the computational 
accuracy. The second row shows the computational 
accuracy in classifying posture activities for the nine 
experimental subjects. The average accuracy is also 
calculated and shown. The third row shows the 
computational accuracy after boosting. It can be seen that 
advanced boosting algorithm does not substantially 
increase classification accuracy. Thus, classification by a 
simple decision tree may be sufficient.  

IV.     CONCLUSION AND DISCUSSION 

 

      In this study,  decision tree classification was applied to 
the problem of recognition of postures and activities in the 
data captured by SmartShoe. The proposed sensor system 
should be convenient for everyday real-life usage with very 
high posture activity classification accuracy. The result of 
decision tree algorithm can suggest direct and effective way 
to simplify the feature set and reduce the total 
computational time. Also, the approach provides 
simplification suggestions for the shoe sensor system. 

      The classification accuracy by decision tree classifier is 
98.85% by itself and 98.90% after boosting. There is still 
space for improvement. The confusion matrix shows that 
there are still cases of misclassifications. There can be 
multiple reasons that cause this problem. Firstly, feature 
extraction chooses features which may largely represent the 
information in the dataset, however it still causes the loss of 
information. This indicates that a more advanced feature 
sets may be able to increase the classification accuracy.  

      After the boosting, the classification accuracy is 
slightly increased, however is not significantly improved. 
Also, boosting is not practical in real usage because it 
obviously increases the computational time. Comparing to 
SVM (support vector machine) algorithm [15], decision 
tree needs much less computational cost, thus is 
significantly faster than SVM classification. Considering 
real-system implementation, decision tree algorithm is 
easier to achieve real-time performance. 

      The model that is experimented in this study is 
individual model, while a group model may be more 
valuable. Since individual subjects’ physical and activities 
are different from each other, group model may potentially 
have lower classification accuracy. However, the accuracy 
should not be dramatically reduced. The classification 
method proposed in this study provides a very direct and 
effective approach to simplify the feature computation 
stage. As shown in the result, the features that needed to be 
computed for the classification can be less than 20% of the 
total features. Moreover, the approach shown in this study 

creates a simple  method to simplify the shoe sensor system. 
The number of sensors that is involved in each 
classification is around 4, which is smaller than the 
proposed sensor number 6. This means that when the shoe 
sensor system is made into production, 2 sensors out of 6 
sensors could be saved in each shoe. 
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