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Abstract— Establishing the exact position of basal ganglia
is key in several brain surgeries, particularly in deep brain
stimulation for patients suffering from Parkinson’s disease.
There have been recent attempts to introduce automatic systems
with the ability to localize, with high accuracy, specific brain
regions. These systems usually follow the classical supervised
learning paradigm, in which training data from different
patients are employed to construct a classifier that is patient-
independent. In this paper, we show how by sharing information
from different patients, it is possible to increase accuracy
for targeting the Subthalamic Nucleus. We do this in the
context of multi-task learning, where different but related
tasks are used simultaneously to leverage the performance of
a learning system. Results show that the multitask framework
can outperform the traditional patient-independent scenario in
two different real datasets.

I. INTRODUCTION

Parkinson’s Disease (PD) is a progressive degenerative

condition of the Central Nervous System (CNS). It is caused

by cell deterioration of a brain structure known as Sub-

stantia Nigra Reticulata-SNR, which leads to a decrease in

dopamine levels. Patients with PD are usually subjected to

drug treatment. In more advanced stages of the disease,

it becomes apparent to proceed with a surgical treatment.

Deep Brain Stimulation (DBS) is the most common surgical

procedure for PD [1]. During DBS, the interpretation of

physiological signals known as Microelectrode Recording

(MER) signals is essential: the specialists analyze these

recordings to locate specific target areas where a stimulating

device should be implanted.

Identification of brain structures from processing MER

signals has proved to be an excellent medical support for

the correct localization of a target brain area and the re-

spective insertion of neuroexcitatory devices. Previous works

employed processing approaches based on temporal analysis

of spikes [2], [3]. Another approach that has been used is the

time-frequency analysis, where MER signals are transformed

to different mathematical spaces. For example, the Short-

Time Fourier Transform space (STFT) [4] or the Wavelet

Transform space (WT) [5]. A more recent method includes

a representation of the MER signals through adaptive filter

banks (adaptive wavelets - AW) with lifting schemes [6].

To the best of our knowledge, all the methods used so far

for basal ganglia identification follow the usual supervised

learning paradigm. In a nutshell, each microelectrode record-
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ing is transformed to a feature space using some signal-

processing representation (i.e. STFT, WT and AW). The

feature vector thus obtained, x, has an associated label t,

assigned by the specialist. In practice, we usually have access

to a set of feature vectors X and the corresponding set of

labels t. Based on a subset of X and t, known as a training

set, a learning algorithm is put to work, with the hope

that the algorithm will exhibit an adequate generalization

ability over a different subset of X and t, known as a

validation set. Learning algorithms that have been tested in

basal ganglia identification problems include naive Bayes [6],

hidden Markov models [7], [8], support vector machines [9],

among others.

Different researchers have reported successful results

when using the classical supervised learning method for

targeting particular brain regions. In this paper, we look for

improving the accuracy delivered by the classical supervised

learning paradigm by including correlations between the

patients that have undergone surgery. Our inspiration is the

multi-task learning framework [10], that has been receiving

increasing interest within the machine learning community in

the last few years [11]. The idea behind multi-task learning

is that by learning simultaneously different but related tasks,

it is possible to increase the performance of a learning

algorithm. The augmented performance is explained due to

the transfer of information between tasks. In our context, we

will assume that each patient undergoing DBS is a different

task. We then attempt to increase the accuracy in targeting

the Subthalamic Nucleus (STN) of that particular patient by

using learning in multiple patients. In this setup, the multi-

task learning becomes multi-patient learning.

Several algorithms for multi-task learning have been pro-

posed in the machine learning literature. In this work, we

employ the multi-task Gaussian processes framework that

exhibits state of the art performance in multi-task problems.

To obtain the input vectors X we use adaptive wavelets. We

show how the multi-patient learning framework improves

accuracy when compared to the usual patient-independent

setup, in two different datasets.

II. MATERIALS AND METHODS

A. Databases

A first database comes from Universidad Tecnológica

de Pereira (DB-UTP). It contains recordings of surgical

procedures in four patients with Parkinson’s disease. Mi-

croelectrode recordings were obtained using the ISIS MER
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Fig. 1. Samples of Microelectrode Recordings from the DB-UTP database.
On the left, a microelectrode recording from the Subthalamic Nucleus.
On the right, a microelectrode recording from Thalamus. Microelectrode
recordings from Zone Incerta and Substantia Nigra Reticulata follow a
similar spiky shape.

system (Inomed Medical GmbH).1 MER signals were labeled

by neurophysiology and neurosurgery specialists from the

Institute of Parkinson and Epilepsy of the Eje Cafetero,

located in the city of Pereira, Colombia. In total, there are

400 recordings of 1 second of duration, sampled at 25 KHz

with 16-bit resolution. The signals come from four patients

and we only consider two classes: 200 recordings belong to

the Subthalamic Nucleus and 200 recordings belong to other

brain regions (Thalamus-TAL, Zone Incerta-ZI, Substantia

Nigra Reticulata-SNR). Samples from STN and TAL are

shown in figure 1.

A second database comes from Universidad Politécnica

de Valencia (DB-UPV). Surgeries were carried out in the

General University Hospital of Valencia, Spain, and labeled

by specialists in neurophysiology and electrophysiology. The

equipment used for data acquisition was the LeadPointTM

Medtronic (Medtronics Functional Diagnostics).2 Each sig-

nal is 1 sec. long, sampled at 24 KHz. In total, there are 240

recordings coming from four patients: 120 recordings belong

to STN and 120 recordings come from other brain regions.

B. Feature Extraction with Wavelets

After preprocessing each MER signal by removing its

artifacts and by normalizing it, we use a dual adaptive

scheme to decompose the original signal into two levels.

The signal is partitioned on windows of 80 msecs with

an overlap of 50%. From the approximation coefficients

obtained from each window, we calculate the normalized

average, the absolute maximum, the kurtosis and the energy,

obtaining 8 features (x ∈ R
8) per MER signal. The reader is

referred to [12] for a detailed description of the above feature

extraction method.

C. Learning algorithms

We use several standard learning algorithms for classifi-

cation in the patient-independent context, this is, when no

correlation among patients is taken into account. For multi-

patient learning, we use different alternatives of multiple-

output Gaussian processes.

1http://www.inomed.com
2http://www.medtronic.com/

1) Standard classifiers: We test different parametric and

non-parametric classifiers. Within the parametric family, we

use the Naive Bayes classifier with a shared covariance

matrix among classes, also known as the linear discriminant

classifier (LDC) and the Naive Bayes classifier with a differ-

ent covariance matrix per class, also known as the quadratic

discriminant classifier (QDC). Within the non-parametric

family, we use the K-nearest neighbors (KNN) algorithm

with K = 1 and K = 3 (KNN1 and KNN3, respectively);

a support vector machine with a radial basis kernel (SVM);

a Gaussian process regressor used as a classifier (GPR) and

a Gaussian process classifier (GPC). The theory behind each

of the above classifiers is well known. The interested reader

is referred to [13].3

2) Multi-output Gaussian Processes: Since this a rela-

tively new topic in the machine learning literature, we spend

a couple of lines here to describe the different multiple output

Gaussian processes methods employed in the experimental

section. A detailed description of several alternatives can be

found at [11].

A general method for multiple output Gaussian processes

employs convolution integrals of latent functions {uq(x)}Q
q=1

with smoothing kernels {Gd(x− z)}D
d=1, to describe D out-

puts or tasks { fd(x)}D
d=1,

fd(x) =
Q

∑
q=1

Z

Gd(x− z)uq(z)dz.

Assuming that the latent functions are independent Gaussian

processes with covariance functions kq(x,x′), the outputs

fd(x) form a joint Gaussian process with covariance function

kd,d′(x,x′) with d,d′ = 1, . . . ,D,

kd,d′(x,x′) =
Q

∑
q=1

Z Z

Gd(x− z)Gd′(x
′− z′)kq(z,z

′)dzdz′.

We call this covariance the Convolved Multiple Output

Covariance or CMOC.

The linear model of coregionalization (LMC) is a partic-

ular case of the above covariance, one for which Gd(x−
z) = adδ(x− z), being δ(x) the Dirac delta function. The

covariance kd,d′(x,x′) reduces then to

kd,d′(x,x′) =
Q

∑
q=1

adad′kq(x,x′).

The number that results from the product adad′ is a measure

of the correlation between the two tasks fd(·) and fd′(·). A

further simplification of the above function, kd,d′(x,x′), can

be obtained assuming that some of the terms kq(x,x′) are the

same (notice, however, that the latent functions uq(x) are still

considered to be orthogonal). This model receives the name

of the intrinsic coregionalization model (ICM).

3The parametric classifiers, KNN1, KNN3 and the SVM are imple-
mented using the PRTOOLS toolbox obtained from http://www.prtools.

org/. GPR is implemented using the Gaussian Process Toolbox from
http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/gp/. GPC is
implemented using the Gaussian Process Toolbox from http://www.

gaussianprocess.org/gpml/code/matlab/doc/.
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Once any of the CMOC, LMC or ICM covariances has

been selected, the traditional technology of Gaussian pro-

cesses for single outputs, as explained for example in [14],

can be employed for doing multi-task regression or multi-

task classification.

In the case of multi-task regression, the usual infer-

ence method is based on maximum likelihood, whereas

for the multi-task classification, inference methods include

the Laplace approximation, Expectation-Propagation (EP),

among others.

In this paper we use multi-task Gaussian process regres-

sion with the CMOC and LMC covariances, for classification

purposes. This practice is sometimes known as least-square

classification. We refer to the multi-task GP with CMOC as

MC and to the multi-task GP with LMC covariance as ML.

We also use the ICM covariance in a multi-task Gaussian

process classifier as introduced in [15], and refer to this

method as MI.4

D. Validation

To test the statistical significance of our results, we follow

the procedure proposed for model selection in [16]. We split

each dataset in a training set and a validation set. We train

the different methods using the training set and then we

measure the accuracy over the validation set. We repeat this

procedure 50 times with a different training set and validation

set per repetition. To study if there are differences that are

statistically significant among the classifiers, we apply first

a Lilliefors test for normality over the 50 repetitions of each

classifier. If the null hypothesis for normality is rejected, we

perform a Kruskal-Wallis test to compare average perfor-

mances among the classifiers. If null hypothesis for equal

medians is rejected, we perform a multiple comparison test

using Tukey-Kramer to study further which classifiers are

different. All the significance levels are measured at 5%.

Two different types of experiments are performed. In the

first type of experiment, we test the performance of the

different classifiers using 50% of the datapoints from each

patient for training, and then validate the performance over

the other 50% of datapoints per patient. The experiment

is performed over both databases. We refer to this type

of experiment as E1. The second type of experiment is

performed only on DB-UTP. The idea here is to test the

generalization ability of the method when few datapoints

per patient are used in the training phase. In detail, we use

50% of the datapoints for three patients and only 10% of the

datapoints for the fourth patient. We then report the accuracy

over the remaining 90% datapoints for the fourth patient for

validation purposes. We will refer to this experiment as E2.

III. EXPERIMENTAL RESULTS

Figures 2 and 3 show accuracy results for E1, this is, when

the same amount of datapoints per patient is used for the

training stage and the validation stage.

4We implement MC and ML using the MULTIGP Toolbox re-
trieved from http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/

multigp/. We implement MI using software available at http://

homepages.inf.ed.ac.uk/gsanguin/software.html.

Figure 2 shows the mean accuracy performances for

different classifiers applied to the database DB-UTP. We

also include in the figure two standard deviations away from

the mean performance. Notice that the methods employing

multi-patient learning (MI, MC, and ML) exhibit better

performance than methods disregarding correlations between

patients (KNN1, KNN3, LDC, QDC, SVM, GPR and GPC).

This increased performance is further tested using the hy-

pothesis tests described in section II-D. The null hypothesis

of equal means between the group of multi-patient learning

algorithms and the group of patient-independent algorithms

is rejected. According to the same analysis, the difference in

performances between MI, MC and ML is not statistically

significant.
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Fig. 2. Mean accuracy and two standard deviations for different classi-
fiers applied to DB-UTP for experiment E1. KNNX stands for K-nearest
neighbors, where X is either 1 or 3. L(Q)DC stands for linear(quadratic)
discriminant classifier. SVM stands for support vector machine. GPR stands
for Gaussian Process Regressor. GPC stands for Gaussian Process Classifier.
MI represents a multi-patient GP classifier with ICM covariance. MC
represents a multi-patient GP regressor with CMOC. ML represents a multi-
patient GP regressor with LMC covariance.

Figure 3 shows the accuracy performances for different

classifiers applied to the database DB-UPV. The mean accu-

racy performances for the multi-patient algorithms (MI, MC

and ML) is superior to the mean accuracy performances of

the standard classifiers.
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Fig. 3. Mean accuracy and two standard deviations for different classifiers
applied to DB-UPV for experiment E1. The specification for each classifier
is given in section II-C.1 or in the caption of figure 2.

Based on the multiple comparison test, we conclude that
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MI and MC are not statistically significant when compared

to KNN1. However, we can reject the null hypothesis of

equal means between ML and KNN1. Also, the mean

performances between MI and SVM are not statistically

significant. Nevertheless, the post test analysis rejects the

null hypothesis of equal means between MC and SVM

and between ML and SVM. The post test analysis also

rejects the null hypothesis of equal means between the multi-

patient learning algorithms, and the other standard classifiers

(KNN3, LDC, QDC, GPR and GPC).

Figure 4 shows the mean accuracy performance and two

standard deviations for E2 over database DB-UTP. Recall

from section II-D that in E2, we use 50% of the datapoints

for three patients and only 10% data points for the other

patient, for the training stage. For this particular experiment,

we use 50% of the datapoints available for patient 2, patient 3

and patient 4, and 10% of the datapoints available for patient

1, for training. In Figure 4, we report the performance over

the remaining 90% datapoints for patient 1.
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Fig. 4. Mean accuracy and two standard deviations for different classifiers
applied to DB-UTP for experiment E2. The specification for each classifier
is given in section II-C.1 or in the caption of figure 2.

It can be seen that the multi-patient learning algorithms

clearly outperform the standard learning algorithms. The null

hypothesis tests further confirm this result.

IV. DISCUSSION AND CONCLUSIONS

We have seen in the experimental section that methods

using multi-patient learning increase the accuracy over stan-

dard learning techniques. Experiment 2 (see figure 4) is

particularly illustrative of the way in which multi-patient

learning can leverage the performance of the learning system,

when only a small number of datapoints are available for a

particular patient.

There is perhaps an even deeper insight about this ex-

periment. To obtain the results appearing in figure 4, we

trained the different methods using 50% of the datapoints

per patients 2, 3 and 4, and 10% of the datapoints per

patient 1. We also compared performances when using 50%

of the datapoints per patients 1, 3 and 4, and 10% of the

datapoints for patient 2. The mean accuracies computed over

the 90% remaining points for patient 2, were not statistically

significant. A closer look at the feature space let us realized

that patient 1 is negatively correlated with patients 2, 3

and 4. Patient 2 is positively correlated with patients 3 and

4. These experiments indicate that multi-patient learning is

robust to scenarios where few negatively correlated samples

are included in the training phase.

We would still like to validate multi-patient learning in

more extreme scenarios, for example, when we use database

DB-UTP for training the learning system, and DB-UPV for

testing it.
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