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Abstract— Brain electrical activity exhibits scale-free 

dynamics that follow power law scaling. Previous works have 

shown that broadband spectral power exhibits state-dependent 

scaling with a log frequency exponent that systematically varies 

with neural state. However, the frequency ranges which best 

characterize biological state are not consistent across brain 

location or subject. An adaptive piecewise linear fitting solution 

was developed to extract features for classification of brain 

state. Performance was evaluated by comparison to an a 

posteriori based feature search method. This analysis, using the 

1/f characteristics of the human ECoG signal, demonstrates 

utility in advancing the ability to perform automated brain 

state discrimination. 

I. INTRODUCTION 

Automated discrimination of neural state has been a long 

standing goal [1-5]. Automatic state determination would 

prove useful in moving long-term monitoring from hospital 

to home settings. It would also enable novel methods for 

monitoring state in normal subjects in positions of high 

stress or sleep loss such as military personnel, shift workers 

or long-haul transport operators. 

At present, defining changes in neural state is done based 

on human observation of changes in the electrical activity of 

the brain, accomplished using both time domain graphemes 

and/or changes in spectral content. To date, however, no 

automated method has proven robust to such subtle state 
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changes as represented by rapid eye movement (REM) sleep, 

in which brain electrical signals are difficult to differentiate 

from the state of quiet wake [3, 6] . 

Despite recent evidence that brain can exhibit local 

changes in state [7, 8], most detection methods rely on 

global measures to define distinct changes in neural state.  

Our work is based on the observation that the brain, like 

other complex dynamic systems, exhibits scale-free 

dynamics that follow power-law scaling [9-12] with a log-

frequency exponent that varies globally between the states of 

awake and deep sleep (slow wave sleep, SWS) [13, 14]. 

Our previous work [15] introduced a best-fit Multivariate 

Maximum Likelihood Analysis (MMLA) technique to 

explore these scale-free properties of human ECoG. Our 

analysis provided new insight into characteristics of this 

property when the brain changes its state between awake and 

asleep. By allowing the data to define the regions over which 

linear slopes could be fit to log-log plots of signal power by 

frequency, we have shown that the ECoG spectrum is not 

well characterized by a single linear fit across a defined set 

of frequencies, but is best described by a set of discrete 

linear fits across the full range of frequencies available. 

In this paper, we build upon our previous analyses to 

explore the use of the power law signatures of the global 

power spectral density (PSD) as state discriminatory 

features. We formalize the MMLA technique presented 

earlier and measure its efficacy in automatically determining 

piecewise linear fit endpoints, thereby modeling unlabeled 

data with scale-free slope line segments. The relative 

performance of this method is examined to assess its 

usefulness in optimally representing state-discriminatory 

characteristics of brain activity. 

We develop an exhaustive search feature extraction 

benchmark against which to compare the value of the best-fit 

MMLA modeling approach. The benchmarking method is 

designed to search for sets of frequency ranges within which 

power law signatures support accurate classification of the 

source PSD and the brain state. The benchmark will 

establish useful limits of 1/f metrics independent of the best-

fit method.  

Based on the results of our analyes, we address the 

following questions:  

1. Do power law signatures of ECoG PSDs contain 

discriminatory information between the stages of non-

REM (NREM) sleep? 

2. If so, is there a relationship between least-error piecewise 

linear signal representation and classifier performance? 
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II. METHODS  

With approval by our institutional review board (HRPO), 

we collected data from subjects undergoing invasive 

monitoring for intractable epilepsy (10 grids). ECoG data 

were collected over several days, providing multiple epochs 

of non-rapid eye movement sleep (NREM) and wake. Five-

minute artifact-free segments representative of NREM sleep 

(N2 and N3/SWS) and awake states were extracted from 

these longer data sets by visual inspection. Ten 30-second 

data segments were cut from each 5-minute segment to yield 

10 data sections for each state of sleep. Data were 

discretized using 2048 frequency samples from 0.2 Hz to 

200 Hz such that their logarithms were equally spaced. The 

method of Welch was used to calculate the power spectral 

density (PSD) at these frequencies[16]. From these PSD 

representations, power law signatures (1/f characteristics) are 

extracted at band limited intervals using the methods below.  

The following notations are used to further facilitate 

description of the techniques presented: 

Scale-free behavior is modeled using the line slopes of a 

piecewise linear approximation of captured signal power for 

each subject and brain state. Each subject is represented by 

data collected from a single ECoG grid consisting of L 

sensors (typically between 20 and 64) and T=10 time 

intervals, where each time interval is 30 seconds long. This 

results in (LxT = N) observations of brain state for each 

subject and sleep stage. For each observation, the piecewise 

linear approximation can be written as: 
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where line segment endpoints, �Aæ, are selected from a set of 

19 frequencies approximately equally distributed in log 

space along the frequency axis (0.2, 0.2¾täw, 0.5, 0.5¾t, 1, 

1¾t, 2, 2¾täw, 5, 5¾t, 10, 10¾t, 20, 20¾täw, 50, 50¾t, 

100, 100¾t, and 200 Hz). Lines in these intervals are 

described by intercepts, >æ, and slopes, Ùæ. These slopes are 

of primary interest in our modeling of the small-world 

network characteristics of brain state.  

While �A5 and �AÌ>5 are fixed at 0.2 Hz and 200 Hz, unique 

partitions of the frequency band Bñ can be generated by 

varying the relative positions of intermediate segment 

endpoints. Each of these unique partitions is said to be 

represented by the endpoint set 'Ý and results in a unique 

characterization of the source signal’s scale-free properties.  

A. Best Fit MMLA 

The task of selecting one of these unique sets of partition 

endpoints is addressed by our best-fit MMLA method. This 

technique extracts PSD power law signatures using 

minimum error straight line curve fits in order to observe the 

discriminatory potential of these features. This technique 

provides a mechanism to characterize scale-free properties 

of data without a priori knowledge of the source state. That 

is, a frequency band partitioning scheme, 'Ý, is selected not 

based on the resulting discriminatory power, but on the error 

of the computed linear fit.  

Piecewise linear fitting was performed using an optimized 

strategy which selects a set of adjacent frequency ranges that 

minimize the line fit error across data from all sensors. This 

unique partition is selected from the set of all possible 

combinations of adjacent frequency ranges. The piecewise 

linear fit is not optimal for each sensor, but the partition 

boundaries selected result in the minimum total error across 

all sensors. Fit error for partitioning 'Ý is computed as: 

 

where Bñ takes on the discretely sampled frequencies in the 

log-log PSD plot. The least-error representation is 

determined as: 
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The highest ranked partitioning scheme, k'Ý+/+0[ÝÝ_o, is 

used to extract feature vectors and matrices to model the 

source brain state, c. Quantifying PSD data in this way 

requires no a priori knowledge of the sample’s class label or 

assumption concerning specific frequency ranges to target.  

An analysis of 2àá line fit error indicates that a four-

segment piecewise linear fit provides a reasonable 

representation of the source data, 2á
ñ. Fig. 1 shows the 

relative line fit error when using S=1..8 piecewise linear 

segments to approximate 2á
ñ. The S=4 segment 

representation strikes a balance between fitting a single non-

representative line to the entire data set and over 

representing PSD details, which only obfuscates proposed 

power law signature characteristics. This analysis agrees 

with our initial studies [15] in that average fit error improved 

less than 5% by modeling PSD slopes with more than four 

segments. 

2á PSD of nth observation(data from a single sensor within 

a 30-second interval); 

2á
ñ log10 space PSD of nth observation; 

2àá� piecewise linear representation of  2á
ñ; 

Bñ frequency in log10 space, i.e. ���54 B; 

�� number of adjacent linear segments used in 2àá; 

'Ý� unique set of segment endpoints {e1…eS+1}; 

o number of classes (brain states); 

0Ö number of training observations in class c; 

 Öá S-dimensional feature vector for representing the nth 

observation in class c; 

�Ö ��0Ö feature matrix composed of 0Ö feature vectors. 
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B. Discriminatory Value Quantification 

Features extracted using this method are selected based on 

their ability to most accurately fit the source data’s 

piecewise linear estimation. Of course, there is no guarantee 

that this same modeling scheme will provide feature 

measures with desirable characteristics in terms of neural 

state discrimination. A straightforward classification system 

is needed to provide a metric estimating the features’ value 

in state discrimination. The Bayes classifier is used here to 

implement maximum likelihood analysis and partition class 

feature data. 

An inspection of slope-value histograms shows normal 

distribution of slope values when considering a single line fit 

segment’s characteristic across channels and time intervals. 

For this reason, a Gaussian mixture model was selected to 

represent class characteristics in feature space, �Ö. These 

Gaussian distributions can be fully specified as a mean 

vector, J�, and covariance matrix, ±� for each class category 

c. It is straightforward to estimate these parameters from 

training data as: 
 

J� L 5
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(4) 

for each class ? L sä ä%, where  ÖÜ represents a single 

observation of slope of class c and 0Ö is the total number of 

observations included in the training set for that class. It 

follows from the definition of the Bayes classifier with a 

Gaussian mixture model that a discriminant function can be 

computed as 

@Ö: ; L 2:ñÖ; s:tè;Ì 6W �±Ö�5 6W A?
5
6
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where 2:ñÖ; is the a priori probability of feature vector z 

belonging to class c (the prior probabilities of each class are 

assumed to be equal). The remainder of the equation is 

simply derived from the scaled and shifted expression of the 

multivariate normal density 0:Æ�á±�;. When presented with 

a new observation, category assignment is determined by 

selecting class i for which @Ü: ; P @Ý: ;�for all E M F. 

The effectiveness of the MMLA data-driven approach to 

feature extraction was quantified using an intra-subject train-

test approach. The feature matrix �Ö is extracted for each set 

of 2àá and 'Ý where 'Ý is ranked as NÔ. These class specific 

feature matrices, �Ö@5áääá¼, are used to compute discriminant 

functions. Finally, the classification accuracy of the 

frequency band partitioning scheme, %#k�Ö@5áääá¼+'Ýo, is 

calculated as the ratio of correctly classified observations vs. 

total number of observations. 
 

C. Benchmark Development 

It is difficult to establish the relative value of a feature 

extraction method without some frame of reference. Our 

benchmark model measures classifier performance using 

slope features extracted from all possible partitioning, 'Ýfor 

all j, of PSD data. By examining all representations of PSD 

slope, we seek to estimate availability of discriminatory 

information contained within these band limited power law 

signatures, determined by ÙÞá�G L sá ä ä á 5 in Eq. (1). A 

posteriori knowledge of sample state is used to determine 

some best frequency band partitioning,�'Ý, resulting in 

minimum-error state discrimination.  This method does not 

preselect a frequency partitioning as in the best-fit MMLA 

approach; rather it searches all possible full band partitions 

and highlights the most discriminative representation. This 

establishes some useful limits of the technique. 

For each observation of a brain state a model is 

constructed as the feature vector  Öá. This S element vector 

is composed of the line slopes Ù5åÙÌ. The state of class c 

(where c is SWS, N2 or Awake) is modeled by the 5�0Ö 

feature matrix �Ö, where each of 0Ö columns is a unique 

feature vector,  Öá. Let %#k�Ö@5áääá¼+'Ýo be the classification 

accuracy of model �Ö@5áääá¼ given partitioning'Ý. The unique 

endpoint set which results in the highest classification 

accuracy can then determined by:  

NÕ L ��� ���
Ý

[%#k�Ö@5áääá¼+'Ýo_ (6) 

where rb is the classification accuracy related to the 

frequency band partitioning, 'Ý, and the most discriminatory 

representation of the source PSD’s scale-free properties. 

With the determination that an S=4 segment fit is 

appropriate, we show an example of the two PSD 

partitioning schemes in Fig. 2. The best-fit MMLA approach 

selects 'Ý for which minimum line fit error is achieved 

across all 2á
ñ (Fig 2 top). A similar, but unique, full band 

partitioning scheme, which results in maximum 

classification accuracy, rb, is selected as the benchmark (Fig 

2 bottom). The differences between these representations of 
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Fig. 1. Line fit error, ÝÝ, vs. number of line segments used to 

approximate 2á
ñ
 with 2àá. Dashed grey lines indicate data from 

individual subjects, while the solid blue line represents the average 

fit error across all subjects. Green and red dashed lines highlight the 

decreasing change in line fit error when using three, four and five 

piecewise linear segments to approximate 2á
ñ
. 
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the source PSD is of interest in determining the value of a 

best-fit MMLA feature selection method. 

 
 

III. RESULTS 

Analysis was performed using data from 2 class categories 

(SWS, Awake) for all subjects and 3 class categories (SWS, 

Awake, N2) for Subjects 1-6. Based on the characteristics 

shown in Fig. 2, S=4 adjacent line segments were used to 

approximate PSD data and 1/f characteristics. While it is 

necessary to select S=4 based purely on unlabeled source 

data to be useful in a state classifier, benchmark analysis 

affords the opportunity to explore the relative value of this 

selection. Fig. 3 shows the classification accuracy, 

%#k�Ö@5áääá¼+'Ýo, achieved where j results in rb for S=1,..,8. 

That is, maximum classification accuracy achieved with an S 

segment linear fit of source PSDs. 
 

  

 

For most subjects, classification accuracy using S=4 is 

within 5% of the maximum; where the curves become nearly 

flat. These responses support the conclusion drawn from Fig. 

1 that a four segment approximation is a reasonable choice 

for representing 2á
ñ for the purposes of state discrimination. 

 

While Fig. 3 demonstrates that using curve fit error to 

determine the number of segments to form the piecewise 

representation of 2á
ñ, our primary goal in establishing a 

benchmark is to evaluate the performance of our best-fit 

MMLA approach. Fig. 4 shows the relationship between line 

segment fit error and the resultant classification accuracy as 

computed in our benchmark analysis. Each data point 

corresponds to %#k�Ö@5áääá¼+'Ýo and the associated ÝÝ, 

computed using Eq. (6), for every endpoint set, 'Ý. Results 

shown are computed using data from Subject 1, where 

classes include SWS, N2 and Awake. 

 

 

 
 

It is clear from the distribution of benchmark operating 

points, ÝÝ vs. %#k�Ö@5áääá¼+'Ýo, that a trend between low fit 

error and high classification accuracy exists. This 

distribution is typical across all subject data studied for both 

the 2 and 3-class cases. The best performing operating point 

is indicated in red, with 94.06% classification accuracy.  The 

resultant performance reported by best-fit MMLA is shown 

in green, with 90.83% classification accuracy. In this case 

the performance of our power law representation nearly 

matches that of the a posteriori based benchmark. Both 

frequency partitions result in low fit error and high accuracy, 

however, the improved performance realized using the 

optimized benchmark may be an indication that there are 

additional characteristics of the source PSD that could be 

used to fine-tune techniques used our approach. 
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Fig. 4. Performance characteristics of S=4 partitioning scheme. Plot 

shows 'Ý, %#k'Ýo pairs for Subject 1 in black. Distribution of plot 

points demonstrates a positive relationship between low line-fit 

error and high classification accuracy. The maximum classification 

accuracy found using benchmark analysis is shown as a red star. 

The classification accuracy resulting from best-fit MMLA is shown 

as a green triangle. Note the proximity of both points toward 

minimum fit error achieved with the four segment linear fit. 

Fig. 3. Classification accuracy vs. number of line segments used to 

approximate 2á
�  with 2àá. Each line indicates the maximum 

classification accuracy achieved using benchmark analysis to 

select segment endpoints, 'Ý. The vertical green line denotes S=4, 

as implemented in this work.    

Fig. 2. Two unique frequency band partitions of a single sensor PSD 

determined by best-fit MMLA (top green) and maximum 

classification accuracy benchmark (bottom red). Best-fit MMLA 

partition endpoints are selected to minimize the error between a four-

segment piecewise linear model and the source PSD. Benchmark 

endpoints are selected to maximize classifier accuracy based on the 

slopes of the resultant line segments. 
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Table 1 A and B detail the performance variations 

between our best-fit MMLA and the highest ranked 

benchmark for all subjects in the studied population. Table 

1A illustrates performance when attempting to discriminate 

between slow wave sleep (SWS) and Awake brain states. 

Benchmark classification is high across all subjects, 

indicating that the global 1/f characteristics contain 

information which supports discrimination between these 

two brain states. It should be noted that discriminability, 

while generally high, does vary by subject. This may be 

relevant to pathological populations and warrants further 

investigation. 

Table 1B shows 3-class system performance for Subject 1 

through Subject 6 (all subjects for which SWS, N2 and 

Awake data were available). Results from the BM column 

show that reasonable discriminatory power exists within the 

measured characteristics. Techniques implemented in 

MMLA demonstrate similar performance results, with a few 

exceptions noted below 

The performance variation between techniques is seen for 

Subject 10. An inspection of the ÝÝ vs. %#k�Ö@5áääá¼+'Ýo 
operating points, as in Fig. 4, shows that many near-

minimum-error endpoint schemes exist which produce 

greater than 90% classification accuracy. The circumstances 

are similar for other large performance disparities (Subjects 

4, 5, 7, and 9). While MMLA based classification accuracies 

for these data are reasonable, this inspection further 

highlights the potential benefit available from combining 

best-fit 1/f features with other measured characteristics in an 

effort to improve classifier performance. 

IV. CONCLUSION 

We have shown that global properties represented in 1/f 

scaling in human ECoG contain sufficient information to 

discriminate substates of NREM sleep. We further show 

that, using a four-segment piecewise linear fit provides a 

reasonable representation of the source data and can be 

accomplished without prior knowledge of the state 

represented. Finally, we show that where fit error is low, 

state classification accuracy is high. While this supports the 

validity of our feature extraction approach, we see variability 

in the ability to discriminate state. This suggests that 

optimization of our technique requires additional features be 

included in the classifier to improve accuracy and reliability. 

Future studies will examine the utility of additional temporal 

characteristics of state transitions in the feature space of the 

classifier. Model validation will be performed using non-

segmented data sets where state is not known prior to 

classification. 
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Table 1. Comparing classifier performance of best performing 

benchmark (BM) technique and of that of the best-fit MMLA method. 

Discriminating SWS from awake (A), SWS, N2, awake (B). 

A (SWS and awake) B (SWS, N2, awake) 

Subject 

BM 

(%) 

MMLA 

(%) % diff 

BM 

(%) 

MMLA 

(%) % diff 

1 100 99.22 0.78% 94.06 90.83 3.23% 

2 100 100 0.00% 91.17 86.17 5.00% 

3 89.76 87.86 1.90% 74.87 72.7 2.17% 

4 97.79 94.74 3.05% 79.53 71.41 8.12% 

5 98.47 90.15 8.32% 81.42 68.63 12.79% 

6 96.8 97.03 0.23% 79.06 77.19 1.87% 

7 97.34 80.55 16.79%    

8 96.05 90.53 5.52%    

9 92.26 79.84 12.42%    

10 94.21 75 19.21%    

4340


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

