
 

 

 

Abstract— Individuals with a transhumeral amputation 

have a large functional deficit and require basic functions out 

of their prosthesis. Myoelectric prostheses have used amplitude 

control techniques for decades to restore one or two degrees of 

freedom to these patients. Pattern recognition control has also 

been investigated for transhumeral amputees, but in recent 

years, has been more focused on transradial amputees or high-

level patients who have received targeted muscle reinnervation. 

This study seeks to use the most recent advances in pattern 

recognition control and investigate techniques that could be 

applied to the majority of the transhumeral amputee 

population that has not had the reinnervation surgery to 

determine if pattern recognition systems may provide them 

with improved control. In this study, able-bodied control 

subjects demonstrated that highly accurate two degree-of-

freedom pattern recognition systems may be trained using four 

EMG channels. Such systems may be used to better control a 

prosthesis in real-time when compared to conventional 

amplitude control with mode switching.  

 

I. INTRODUCTION 

A myoelectric prosthesis is controlled using processed 
electromyographic (EMG) signals measured from the 
patient’s residual limb. The EMG signal processing can be as 
simple as comparing the amplitude, or mean absolute values 
(MAV), of signals measured from a pair of agonist/ 
antagonist muscles or as complex as extracting patterns 
measured from multiple muscles [1]. The control method 
which provides the best functional outcome for each patient 
is the subject of ongoing research.  

Individuals with high-level amputations have a great need 
for functional prostheses because of their vast functional 
deficits. Unfortunately, these patients have very few suitable 
muscles remaining from which to measure EMG signals.  
Kuiken et. al, developed a surgical technique, called targeted 
muscle reinnervation (TMR), that allows for simultaneous 

control of multiple degrees-of-freedom (DOF) in myoelectric 
prostheses [2]. This procedure is based on the transfer of 
residual nerves of amputees to ‘spare’ muscles in or near the 
residual limb that are no longer biomechanically functional as 
a result of the amputation. Post-surgery, individuals with a 
transhumeral amputation can either control a prosthesis with 
two DOF using conventional amplitude based direct-control 
or four DOF using pattern recognition [3]. Although the 
targeted reinnervation surgery is not difficult and is increasing 
in popularity, the vast majority of transhumeral amputees are 
not TMR recipients.  

Two-site direct control (DC) is a popular conventional 
myoelectric control method and works very well if EMG 
signals can be measured from physiologically appropriate 
agonist/antagonist muscles pairs. For example, in the context 
of transhumeral amputation, the MAV of the biceps and 
triceps muscles can be used to intuitively control elbow 
flexion and extension, respectively. A mode switch in the 
form of a mechanical switch or a muscle co-contraction is 
commonly used such that the same control sites can control a 
second DOF (hand-open and hand-close) but such systems 
are less intuitive to use. Williams [4] has provided an 
excellent, detailed summary of different conventional control 
options for upper limb amputees. 

 Pattern recognition systems do not require mode switches 
and are considered by many to be more intuitive methods to 
control two or more DOFs in comparison to direct control 
with mode switching. Hudgins [5] showed that transhumeral 
amputees were capable of producing repeatable EMG signal 
patterns for five discriminated motions with classification 
errors around 15%. These results were obtained by 
considering only the transient portions of the EMG signal 
from a single channel where one electrode was placed on the 
biceps and one electrode was placed on the triceps. All 
patterns were discriminated using an artificial neural network.  

In addition to classification error, it is very important to 
characterize the patient’s real-time control performance. 
Virtual environments are useful tools that allow researchers to 
quickly evaluate real-time control systems without the need 
for physical prostheses. Furthermore, simple assessment tests 
may be added to the virtual environment to quantify 
performances and enable comparisons between different 
control strategies. Simon et. al [6], developed a virtual 
environment performance metric termed the Target 
Achievement Control Test (TAC Test) which requires the 
subject to conform the virtual prosthesis to designated target 
postures and has been used to evaluate the performance of 
pattern recognition myoelectric control systems. 

       Recently, pattern recognition research has focused more 
on the transradial or TMR amputee with only a few studies 
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reporting results for non-TMR transhumeral patients [7]. In 
this study, we evaluate the real-time performance of non-
amputee subjects using similar muscle sites that would be 
available on a transhumeral amputee. Subjects controlled a 
virtual transhumeral prosthesis using both conventional 
amplitude and pattern recognition control.   

II. METHODS 

Six healthy non-amputee control subjects (Table I) 
participated in the study which was approved by the 
Northwestern University Institutional Review Board. The 
overall goal of the study was to compare one and two DOF 
control using EMG signals measured from the biceps and 
triceps with 1) a two-site direct control configuration with 
mode switching and 2) using pattern recognition. The study 
required two visits to complete. Configurations to control a 
single DOF were performed on one day and were performed 
by all six subjects. Configurations to control two DOFs were 
performed on a second day. Due to scheduling constraints, 
only four of the six subjects performed the second day’s 
experiment.      

A. Direct Control  

For the direct control configuration, one pair of 
electrodes was placed on the muscle belly over the short head 
of the biceps and one pair of electrodes was placed on the 
muscle belly over the medial head of the triceps. EMG signal 
testing was performed according to clinical best practices and 
the electrodes were relocated if either signal was 
contaminated by a substantial amount of muscle crosstalk. 
The gain of each channel was set to a convenient value and 
all data were bandpass filtered (20-500 Hz) and sampled at 
1000 Hz using a Delsys-Bagnoli-16 EMG amplifier system. 
The MAV of each signal was computed over 250 ms 
windows, which was updated each 50 ms. A dual-site 
differential direct proportional control system [4] was 
configured by setting appropriate gains and thresholds with 
the assistance of a prosthetist according to clinical best 
practices. A co-contraction switch was used to toggle 
between the DOFs during TAC Tests that required control 
over two DOFs.       

B. Pattern Recognition 

 For the pattern recognition configuration, the same 
channels of the direct control configuration were used. Two 
additional pairs of electrodes, were placed on the upper arm 
between the direct control sites but were not targeted over 
specific muscles. Previous work by Hudgins [5] suggested 
that EMG signal patterns produced by elbow 
flexion/extension and humeral rotation in/out produce 
repeatable patterns suitable for pattern recognition. Pattern 
recognition data were collected using computer-guided 
sessions which displayed pictures of the motions subjects 
were required to perform. Subjects were instructed to make 
repeatable, medium force contractions to the best of their 
ability; however, no feedback was provided. Eight repetitions 
of each motion were collected in a non-randomized order and 
each motion was held for 3 s, with 2 s of rest between 
motions. This protocol is very similar to training data 
collections used previously to configure pattern recognition 

systems for both transradial and TMR amputee patients and 
resulted in 12 s of data to train the classifier and 12 s of data 
to test the classifier. The pattern recognition controller used 
four time-domain features (mean absolute value, waveform 
length, number of zero crossings, and number of slope sign 
changes) extracted from 250 ms window, updated each 50 
ms, and a linear discriminant analysis (LDA) classifier. This 
control scheme has been thoroughly described in the literature 
[2, 8] and performs similarly to other, more computationally 
intensive, non-linear methods [9]. 

 The pattern recognition control system was trained for 
three scenarios. Firstly, the system was trained to recognize 
only one DOF: elbow flexion/extension. Secondly, the system 
was trained to recognize only one DOF: humeral rotation 
in/out. Thirdly, the system was trained to recognize two 
DOFs: elbow flexion/extension and humeral rotation in/out. 

C. Real-time Testing 

 The TAC Test is a virtual environment test that requires 
subjects to conform a virtual prosthesis into a set of 
designated postures. Test complexity defined the minimum 
number of DOFs required to reach each posture. For this 
study, a series of postures were used with test complexities 
equal to 1 (i.e. either elbow flexion, elbow extension, humeral 
rotation in, or humeral rotation out was required to reach the 
target posture) and 2 (e.g. both elbow flexion and humeral 
rotation in was required to reach the target posture).  

 For TAC tests of complexity 1, the subjects had 15 s to 
successfully reach the target posture and remain within the 
target for 2 s. For the TAC tests of complexity 2, the subject 
was allowed 30 s to successfully reach the target posture and 
remain in the target for 2 s. An outline of the target posture 
was provided to the subject and the virtual prosthesis changed 
from beige to green when it was within the target area (Fig 1) 
plus or minus 5 deg. 

 

    

 
Fig 1:  Example of the TAC Test.  The virtual prosthesis must be 

conformed to the target posture outlined in grey. The prosthesis will 

change color when it is in the approriate locatoin.  
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 A TAC Test of complexity 1 was comprised of 24 
repetitions (12 along each direction of the degree of freedom) 
presented in a random order to the subject. A TAC Test of 
complexity 2 was comprised of 48 repetitions (six repetitions 
of every possible combination of the two DOFs) presented in 
a random order.     

TABLE I.  DEMOGRAPHICS OF TESTED SUBJECTS. 

Subject 

No. 
Gender 

Arm 

Tested 

Trial 

Subject 

1 M Right Control 

2 M Right Control 

3 F Right Control 

4 M Right Control 

5 F Right Control 

6 M Right Control 

 

 The pattern recognition performance was quantified in 
terms of classification error – the percentage of motions 
incorrectly identified by the classifier. TAC Test 
performance metrics are presented in terms of completion 
time, completion rate and path efficiency. Completion Time 
is the time that takes the subject to complete the test. Path 
efficiency is the shortest path to the target divided by the 
total distance traveled by the virtual prosthesis. The less 
corrections made, the more efficient the path. Completion 
rate is the number of trials achieved divided by the total 
number of trials. 

III. RESULTS 

The pattern recognition classification errors for the 
pattern recognition control systems investigated as part of 
this study were all very low. Pattern recognition classifiers 
configured to control only elbow flexion and extension had, 
on average, errors of less than 1% (±0.5), and classifiers 
configured to control only humeral rotation had errors of less 
than 5% (±4). Systems configured to control both DOFs had 
errors of less than 6% (±3). When controlling only a virtual 
elbow, there was no difference in subject performance 
between direct control and pattern recognition (Table II). 
Subjects took a longer time to complete tests using pattern 
recognition when they were controlling for humeral rotation 
instead of elbow flexion and extension.  

TABLE II.  PERFORMANCE METRICS FOR 1 DOF CONTROLLERS. 

Control 
Completion 

Time (s) 

Path 

Efficiency 

(%) 

Completion 

Rate (%) 

Elbow flex/extend DC 1.6 ± 0.4 91.0 ± 2.0 100 ± 0.0 

Elbow flex/extend PR 1.3 ± 0.3 87.7 ± 3.3 100 ± 0.0 

Humeral rotation PR 3.8 ± 1.4 60. 3 ± 11.7 95.1 ± 7.6 

 

 The TAC test results yielded by using a system configured 
to recognize two DOFs show longer completion times, lower 
path efficiencies, and lower completion rates (Table III) than 
compared with using a system configured to recognize only 
one DOF.  

 

 

TABLE III.  PERFORMANCE METRICS FOR 2 DOF CONTROLLERS. 

Control 
TAC Test 

Complexity 

Completion 

Time (s) 

Path 

Efficiency 

(%) 

Completion 

Rate (%) 

DC 1 3.0 ± 0.7 76.4 ± 4.6 91.8 ± 13.1 

PR 1 3.6 ± 0.8 60.2 ± 10.1 89.6 ± 10.9 
DC 2 11.1 ± 1.1 57.6 ± 8.0 84.5 ± 14.9 

PR 2 7.4 ± 1.0 64.4 ± 8.1 95.3 ± 2.0 

 

IV. DISCUSSION AND CONCLUSION 

Several interesting points can be made when considering 
the control systems configured to control only a single DOF. 
Unsurprisingly, it should be noted that either pattern 
recognition or direct control can be used to reliably control 
elbow flexion/extension in real time. Subjects were able to 
quickly position the virtual prosthesis into all postures. The 
humeral rotation motions were also accurately discriminated 
by the pattern recognition system and reliably controlled in 
real-time when only a single DOF classifier was trained to 
recognize these motions. Subjects had more difficulty and 
higher classification errors when controlling the humeral 
rotation DOF but still were able to successfully complete over 
95% of the motions on average. Subjects reported that 
performing elbow flexion and extension contractions felt 
more natural then performing humeral rotation contractions. 

When considering systems configured to control two 
DOFs, it is interesting to contrast the performance of a TAC 
Test complexity of 1 with a TAC Test complexity 2. When 
controlling both the elbow and humeral rotation in a two DOF 
virtual prosthesis, performance is dependent upon the 
complexity of the task presented. Tests that involve 
performing only one motion to reach the target show minimal 
differences between using direct control and pattern 
recognition (Table III). This difference may be in part due to 
the fact that with direct control, users only had to perform the 
co-contraction switch half of the time. Tests that involve 
performing two motions to reach the target required use of 
this co-contraction switch during all direct control trials.  

Completion times were approximately two times longer 
during TAC Tests of complexity 2 compared to a complexity 
of 1 for the pattern recognition system train to recognize two 
DOFs. This result is intuitive when considering that pattern 
recognition is currently limited to sequential control. The 
TAC tests of complexity 2 were almost three times longer 
than tests of complexity 1 for the direct control configuration. 
This suggests that a large portion of the trial was spent mode 
switching. Qualitatively, subjects reported a strong dislike of 
mode switching.   

Our classification results support the work of Hudgins [5] 
and extends them to show that the system can be controlled in 
the presence of real-time feedback in order to complete a task. 
In this study, able-bodied subjects provided our preliminary 
evidence of success with a two DOF pattern recognition 
system using muscle sites that would be available on a 
transhumeral amputee.  
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 Transhumeral amputees are in much greater need of 
control over a hand in comparison to humeral rotation – 
although both are very important to activities of daily living.  
In this experiment, we investigated humeral rotation because 
of previous success in extracting repeatable EMG signal 
patterns [5]. Commercially available prosthesis do not 
support actuated humeral rotation. Instead, in a clinical 
implementation we would re-map the humeral rotation 
commands to open or close a hand. This control scheme 
would eliminate the need for mode switching but would 
require that patients think about performing humeral rotation 
to operate their hand. We plan to complete these experiments 
with transhumeral amputees in order to extend our findings. 
We expect that the improvements made in pattern 
recognition control over the past decade may be applied to 
non-TMR transhumeral amputees to improve their functional 
performance.  
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