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Abstract— Sleep spindles are transient waveforms found in 

the electroencephalogram (EEG) of non-rapid eye movement 

(NREM) sleep. Sleep spindles are used for the classification of 

sleep stages and have been studied in the context of various 

psychiatric and neurological disorders, such as Alzheimer’s 

disease (AD) and the so-called Mild Cognitive Impairment 

(MCI), which is considered to be a transitional stage between 

normal aging and dementia. The visual processing of whole-

night sleep EEG recordings is tedious. Therefore, various 

techniques have been proposed for automatically detecting 

sleep spindles. In the present work an automatic sleep spindle 

detection system, that has been previously proposed, using a 

Multi-Layer Perceptron (MLP) Artificial Neural Network 

(ANN), is evaluated in detecting spindles of both healthy 

controls, as well as MCI and AD patients. An investigation is 

carried also concerning the visual detection process, taking into 

consideration the feedback information provided by the 

automatic detection system. Results indicate that the sensitivity 

of the detector was 81.4%, 62.2%, and 83.3% and the false 

positive rate was 34%, 11.5%, and 33.3%, for the control, 

MCI, and AD groups, respectively. The visual detection process 

had a sensitivity rate ranging from 46.5% to 60% and a false 

positive rate ranging from 4.8% to 19.2%.  

I. INTRODUCTION 

Transient waveforms are present in the sleep 
electroencephalogram (EEG). Sleep spindles are one of the 
most distinctive transient waveforms found in the EEG of 
non-rapid eye movement (NREM) sleep. They are waxing 
and waning oscillations, of usually 1-2 sec duration, present 
predominantly in stage 2 of NREM sleep, but also persisting 
through slow wave sleep, i.e., stages 3 and 4 of NREM sleep. 
The waveform frequency ranges from around 11 to 16 Hz 
and its amplitude is mostly below 50 �V peak-to-peak in an 
adult [1,2]. In recent years there has been progress in 
elucidating the mechanisms generating spindles, although 
their functional significance is an ongoing research topic 
[3,4]. Spindles are used in the classification of sleep stages, 
since their presence constitutes one of the defining 
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characteristics of stage 2 sleep [5]. Among other topics, sleep 
spindles have been investigated in the context of dementia, 
especially Alzheimer’s disease (AD) and Mild Cognitive 
Impairment (MCI), which is considered to be a transitional 
stage between normal aging and dementia, usually AD [6,7]. 
Sleep spindles are poorly formed, of lower amplitude, shorter 
duration and much less numerous in AD than in normal aging 
[8]. Concurrently, studies indicate possible sleep spindle 
involvement in cognition and learning [9]. 

The visual recognition and counting of spindles is a 
laborious and time-consuming task for whole-night sleep 
EEG recordings. Automatic spindle detection might help, but 
automatic detection is seriously hampered by the fact that 
spindles might be of low amplitude (a few microvolts), are 
often superimposed on much stronger slow-wave activity and 
co-exist with diffuse spindle-like rhythmic activity. These 
problems are compounded by the loose definition of spindles, 
the high variability in spindle characteristics between 
subjects and the lack of a reliable “gold” standard, apart from 
visual inspection, for benchmarking the performance of the 
proposed systems [2,10,11]. Nevertheless, a rich variety of 
techniques have been proposed [11]. The techniques applied 
comprise frequency and amplitude analysis [12-14], fuzzy 
detectors [11,13], Support-Vector Machine (SVM) classifiers 
[15], Matching Pursuit (MP) and wavelet techniques [16-18], 
as well as Artificial Neural Networks (ANN) [10,15,19]. 

In our previous work [10], the time-domain 
representation of band-pass (10.5-16 Hz) filtered EEG of a 
healthy adult subject was used as input to a feed-forward 
Multi-Layer Perceptron (MLP) ANN, without feature 
extraction other than that produced by the band-pass filtering. 
The ANN processed through its input layer successive 0.5 s-
long windows of filtered EEG, down-sampled appropriately 
to 128 samples/sec. Each voltage sample in the input window 
was assigned to one input-layer neuron. The MLP was 3-
layered, with 64, 30 and 2 neurons in the input, hidden and 
output layer, respectively. By training the network on 
characteristic examples of filtered EEG segments, the MLP 
provided acceptable classification results, bypassing the 
feature selection stage. In the present work, the MLP-ANN is 
evaluated in detecting spindles of both healthy controls as 
well as MCI and AD patients. An investigation is carried also 
concerning the visual detection process, taking into 
consideration the feedback information provided by the 
automatic detection system. 
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II. MATERIALS AND METHODS 

The subject recordings in the present study were provided 
by the Sleep Research Unit of the Eginition Hospital in 
Athens. The polysomnograms were recorded with the 
Micromed/BrainQuick system. 

The first set of recordings (Set1) consisted of 3 whole-
night recordings from 3 healthy male control subjects (aged 
26 years). The night sleep record of each subject was divided 
into three consecutive parts (thirds of the night). In each part, 
the longest stage 2 sleep period was selected, provided that it 
lasted for at least 10 minutes. Then a time frame, starting 5 
min after the start of stage 2 and lasting 5 min and 5 sec, was 
selected for visual analysis. Cz recordings from one subject 
(sampling rate 256 Hz) and C3 recordings (sampling rate 512 
Hz) from the other two subjects were scored by a 
polysomnographer, based on visual detection criteria 
described in [10]. After visual detection, the sampled EEG 
signal was band-pass filtered, using a 128-coefficient FIR 
filter, with 3dB cutoff frequencies set at 10.5 and 16 Hz. The 
MLP was trained using the methodology described in [10]. 
The set of biases and weights that was produced by the 
training is denoted TRA. It should be pointed that Set1 was 
used only for providing TRA. In the present study, no 
performance evaluation of the automated spindle detection 
system was carried on Set1. 

The second set of recordings (Set2) was based on whole-
night recordings from 4 healthy controls (3 male and 1 
female, average age=67 years, S.D.=6.98 years), 7 patients 
suffering from MCI (7 females, average age=75.7 years, 
S.D.=5.8 years) and 2 patients suffering from AD (1 male 
and 1 female, aged 73 and 76 years, respectively). 
Recordings were performed with 512 Hz sampling rate. The 
recordings were scored in consensus by two human scorers, 
other from the scorer who scored Set1, according to the 
following criteria. “Bona fide” spindles were those that fitted 
unequivocally the criteria of [5], i.e., they presented a 
fusiform activity with frequency at 12 to 14 Hz with a 
duration of at least 0.5 sec. The number of those spindles was 
denoted as VBFS.  “Marginal” spindles where those that, 
although they kept their fusiform shape, had either duration 
from 0.4 to 0.5 sec or presented frequencies from 10 to 12 Hz 
or 12 to 15 Hz. Additionally, for “marginal” spindles to be 
accepted by the scorers, they had to be present at central or 
parietal electrodes. The number of those spindles was 
denoted as VMAR. The relaxation of the visual detection 
criteria was deemed essential, since the study was designed to 
include recordings from patient populations, whose spindles 
are expected to be somewhat, or even severely, distorted. 
Suppose that visual detection indicated, in consensus scoring 
by two scorers, V spindles. The total number (V) of spindles 
detected in consensus by the scorers was the sum of the 
“bona fide” spindles, VBFS, and the spindles that fitted the 
visual detection criteria marginally, VMAR:  

 V=VBFS+VMAR. (1) 

After visual detection, the sampled EEG signal was band-
pass filtered, as for Set1. The MLP was trained as described 

in [10]. The set of biases and weights that was produced by 
the training is denoted TRB. 

Performance evaluation of the MLP was accomplished 
using the output value O(t), 0�O(t)�1, t corresponding to the 
time samples of the visually scored EEG recordings. The O(t) 
curve was divided into parts that had value greater or lower 
than a threshold value VT. The parts that had a value greater 
than VT were denoted as “peaks”. We used two criteria for 
checking whether a spindle presence was indicated by the 
ANN output. According to the “soft” criterion (SC), the 
ANN provided a spindle indication (SI) when a peak existed 
in the O(t) curve. According to the “hard” criterion (HC), a 
spindle presence was indicated only when the peak duration 
was greater than PD sec. The SIs were automatically 
computed by the system [20-22]. 

Next, SIs were divided into 4 categories. Category 1 
included the SIs which matched visually detected spindles. 
Their number was denoted by NV. Category 2 included SIs in 
EEG segments where no spindles were detected by the 
human scorers. Nevertheless, on a second inspection based 
on the SIs, those EEG segments unequivocally fitted the 
visual detection criteria, i.e., corresponded to bona fide 
spindles that were missed by the scorers.  Their number was 
denoted by NBFS. Category 3 included SIs in EEG segments 
where no spindles were detected by the human scorers and 
where the EEG morphology also unequivocally did not fit the 
visual detection criteria for spindles. These SIs (whose 
number was denoted by NsFP) could be denoted as “serious” 
false positives of the MLP. Finally, category 4 included SIs 
in EEG segments where no spindles were detected by the 
human scorers and at the same time the EEG morphology 
fitted only marginally the visual detection criteria for 
spindles. Their number was denoted by NMAR. If N was the 
total number of SIs then: 

 �= NV+NBFS+ NsFP+NMAR. (2) 

In the present study, 3 sleep EEG segments, belonging to 
stage 2 of sleep, were used for implementing the performance 
evaluation of the MLP. Each segment belonged to one 
subject from the 3 subject groups used in Set2 and was not 
previously used in the training process. 2 MLP outputs 
(“runs”) were computed, for each segment, one using the 
weights and biases computed by TRA and the second using 
the weights and biases computed by TRB. For each run, the 
respective quantities of SIs were denoted by NX,NV/X,NBFS/X, 
NsFP/X and NMAR/X, x=A or B, indicating the respective “run”. 

It is well known that high levels of inter-rater and intra-
rater variability might be present in the scoring process [10]. 
A crucial quantity used for computing the performance of an 
automatic spindle detection system is the quantity of spindles 
that are considered to be present in each of the EEG segments 
used for the performance evaluation. This quantity (that will 
be denoted as E in the following) is affected by the scoring 
variability. On the other hand, the MLP provides SIs and 
their careful examination, as exposed in the categorization of 
SIs into 4 categories (see above), might provide some help in 
alleviating the problems related to visual scoring. For 
example, the information present in the SIs helped in 
detecting segments that included bona-fide spindles which 

4329



  

were nevertheless missed by the scorers (i.e., category 2 SIs). 
In light of the above considerations, in the present study, E 
was not taken as equal to the number of spindles initially 
detected by the human scorers (i.e., V=VBFS+VMAR), but was 
computed as described in the following. Firstly, in E were 
included the spindles that were visually detected by the 
scorers and fitted unequivocally the visual detection criteria, 
VBFS. Secondly, from the spindles that were visually detected 
by the scorers and fitted the visual detection criteria 
marginally, VMAR, only those that were also detected by the 
MLP in at least one of the 2 runs (whose number was 
denoted as VMAR(1)) were included in E. The rest of the 
spindles that were visually detected by the scorers and fitted 
the visual detection criteria marginally (whose number was 
denoted as VMAR(2)=VMAR-VMAR(1)) were not included in E, 
but were classified as visual false positives (VFP) in the 
performance evaluation of the visual detection process (see 
below). Thirdly, in E were also included those EEG segments 
that corresponded to category 2 SIs in at least one of the 2 
runs. We denote the number of such EEG segments as 
NBFS(A � B). Finally, in E were also included those EEG 
segments that corresponded to category 4 SIs in at least one 
of the 2 runs. We denote the number of such EEG segments 
as NMAR(A � B).  

According to the above categorization, the sensitivity of 
the MLP for run x (x=A or B) was computed as: 

 SX=HX/E*100 (3) 

where 

 þX = NV/X+NBFS/X+NMAR/X (4) 

 E= VBFS+VMAR(1)+NBFS(A � B)+NMAR(A � B) (5) 

The false positive rate of the MLP for run x (x=A or B) 
was computed as  

 FPX = NsFP/X/NX*100 (6) 

It was stated previously that E might provide a better 
indication, as compared to V, about the quantity of spindles 
that are present in each of the EEG segments used for the 
performance evaluation. Following the rationale used for 
computing E, in the present study, in addition to the 
performance evaluation of the MLP as expressed by SX and 
FPX, an evaluation was attempted for the visual detection 
process. The sensitivity of the visual detection process can be 
considered as: 

 SVIS=(VBFS+VMAR(1))/E*100 (7) 

The false positive rate of the visual detection process is 
quantified as: 

 FPVIS=VFP/V=VMAR(2)/(VBFS+VMAR)= 

 VMAR(2)/(VBFS+VMAR(1)+VMAR(2))*100, (8) 

where the visual false positives (VFP)  are those spindles that 
were visually detected, fitted the visual detection criteria 
marginally and were not detected by the MLP in any of the 2 
runs. 

It is worth noting that the above procedure, both for the 
MLP and the visual detection process performance 

evaluation, can be, in principle, extended to include the 
information from more than 2 “runs”. 

III. RESULTS 

For the training of the MLP using Set1, 18 spindle 
segments, containing only spindle activity,  and 18 segments 
free of spindle activity were used. The spindle segments, in 
order to be selected, had to correspond to “bona fide” 
spindles, with spindle amplitude of at least 10�V. The 
segments were selected proportionally from the 3 subjects of 
Set1 and the 3 parts of the night.  

For the training of MLP using Set2, 6, 11 and 6 spindle 
segments were used, containing only spindle activity, from 
the healthy, MCI and AD group recordings, respectively, as 
well as 5, 10 and 2 segments, free of spindle activity, from 
the healthy, MCI and AD groups, respectively. Spindle 
segments were selected for training with the same criteria as 
those for Set1. Various electrode positions were used in the 
analysis, such as F4, C4, P3, P4, O1 and O2. This was so in 
order to make the training of the MLP classifier independent 
of a specific location. This was expected to provide 
classification results that would have been more 
representative of what would happen when the system is 
used, after learning, for detecting spindles at various 
electrode positions.  

The visual detection process for Set2 indicated 21 
spindles for the control subject segments, 26 spindles for the 
MCI subject segments and 38 spindles for the AD subject 
segments. Two “runs” were performed on segments from 
Set2, one for TRA (“run A”), with VT=0.5 and PD=0.3 sec, 
and another for TRB (“run B”), with VT=0.9 and PD=0.5 sec. 
The values of the thresholds were selected after preliminary 
sets of “testing runs” were performed, for weights and biases 
values as produced by TRA and TRB. Threshold 
optimization was implemented only for the purpose of the 
present performance evaluation. In future use of the system, 
for AD and MCI patients, thresholds might be permanently 
fixed to the values selected in the present work for TRB. 
Measure E had the values 43, 37 and 60 for the control 
subject, the MCI patient and the AD patient, respectively. 
Performance evaluation results for the MLP are given in 
Table I, for runs A and B. Performance evaluation results of 
the visual spindle detection process are given in Table II. 

IV. DISCUSSION 

The performance evaluation results presented in Table I 
provide a clear distinction between the results for runs A and 
B, concerning sensitivity values. Sensitivity is much higher 
for run B, for each of the subject groups. In run A the MLP 
used was trained on data from control subjects only, different 
from the control subjects used in testing of the MLP. In run B 
the MLP used was trained on data from both control and 
patient subjects. Therefore, it might be conjectured that the 
improvement of the performance of the MLP in run B is due 
to the fact that it has been trained on both patient and on 
control data, and to the fact that the training data were from  
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TABLE I.  PERFORMANCE EVALUATION FOR MLP FOR RUNS A AND B 

TABLE II.  PERFORMANCE EVALUATION OF THE VISUAL SPINDLE 

DETECTION PROCESS 

 

the same subjects as those used for testing the MLP. On the 
other hand, although 10 and 2 of the 17 spindles used for 
training the MLP used in run B belonged to MCI and AD 
patients, respectively, sensitivity was much lower for the 
MCI group than for the AD and the control subjects group. 
Concerning the false positive rate, results for run B were 
improved compared to run A only for the MCI patients.   

As can be seen from Table II, the visual detection process 
presents low sensitivity, in the range of 45% to 60%. This 
indicates that a lot of spindles that should have been detected 
by the scorers in their “1st pass” have been missed. This has   
serious repercussions, because the performance evaluation of 
an automatic detection system is absolutely dependent on the 
markings given by the human scorers, for providing a 
benchmark for computing its performance. The existence of a 
high number of spindles, indicated by the system but missed 
by the scorers, will lead to artificially high false positive 
rates. Therefore, the implementation of “feedback” processes, 
concerning the visually detected spindles, as the one used in 
the present study, might be beneficial for the reliability of the 
performance evaluation of automatic systems. Another aspect 
that emerges from the results of Table II is that the sensitivity 
of the visual detection process is not worsening for the 
patient classes, as could have been expected due to the 
relative deterioration of the spindle morphology in AD 
patients [6-8]. 
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 Run A 

Subjects NV/A NBFS/A NsFP/A NMAR/A þA SA FPA 

Controls 17 4 5 6 27 62.8 15.6 

MCI 8 2 3 2 12 32.4 20.0 

AD 26 9 11 4 39 65.0 22.0 

 Run B 

Subjects NV/B NBFS/B NsFP/B NMAR/B þB SB FPB 

Controls 18 11 18 6 35 81.4 34.0 

MCI  10 7 3 6 23 62.2 11.5 

AD 33 12 25 5 50 83.3 33.3 

Subjects V VBFS VMAR(1) VMAR(2) SVIS FPVIS 

Controls 21 17 3 1 46,5 4,8 

MCI 26 18 3 5 56,8 19,2 

AD 38 29 7 2 60,0 5,3 
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