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Abstract— The robustness and usability of pattern recogni-
tion based myoelectric control systems degrade significantly if
the sensors are displaced during usage. This effect inevitably oc-
curs during donning, doffing or using an upper-limb prosthesis
over a longer period of time. Electrode shift has been previously
studied but remains an unsolved problem. In this study we
investigate if increasing the number of electrode channels and
recording locations can improve the degraded classification ac-
curacy caused by electrode shift. In our experiment we use a 96
channel high density electrode array to distinguish 11 different
hand and wrist movements. Our results show that for electrode
shifts up to 1 cm an array of about 32 sensors in combination
with state-of-the-art pattern recognition algorithms is sufficient
to compensate the electrode displacement effect.

I. INTRODUCTION

Modern myoelectric upper-limb prostheses are able to
assist the amputee in performing activities of daily living and
restore a great amount of independence and quality of life.
Despite the constant improvement of upper-limb prostheses
during the last decades, their restricted control and limited
degrees of freedom (DOF) are repeatedly referred to as the
main reasons for their low acceptance rate among amputees
[1].
Powered upper-limb prostheses are typically controlled using
multi-channel surface myoelectric signals (MES) recorded
from residual muscles in the amputation stump and can
be generally classified into two groups: conventional myo-
electric control, and pattern recognition based myoelectric
control schemes [2]. Current commercially available my-
oelectric transradial prostheses typically use a set of two
bipolar electrodes to acquire MES from the upper and lower
forearm muscles. Information extracted from the amplitude
[3] or rate of change [4] of the recorded signals is used
to proportionally control one degree of freedom. Additional
prosthetic functions can be achieved by mode switching
using co-contractions or hardware switches [5], which is
often cited as counter-intuitive and cumbersome for the
amputee.
Pattern recognition based control schemes are an active
research area and can potentially enable the amputee to
intuitively operate multiple DOFs [6]. They are based on
the assumption that a set of features extracted from MES
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is repeatable for a specific movement and distinguishable
from a set of features extracted during another movement. In
today’s literature the signal processing chain is often broken
down to three components: the feature extraction, the di-
mensionality reduction and the pattern classification. During
the first two steps attributes are extracted from MES and
reduced by selecting features for more robust and accurate
classification. In the last step pattern matching algorithms are
applied to detect the category of the input data [7]. A variety
of feature extraction methods and classification algorithms
have been successfully used for upper-limb prosthesis control
in laboratory settings [8]–[13].
One challenging factor in pattern recognition based con-
trol schemes is variation in electrode recording placement.
Donning, doffing or using a myoelectric prosthesis over
a longer period of time can cause the electrodes inside
the shaft to change their recording locations which results
in a degradation of classification accuracy. This effect has
been previously studied but remains an unsolved problem.
Hudgins et al. [2] acquired MES from two electrodes placed
on the biceps and triceps to distinguish four contraction
types. The small number of contractions could be relatively
easily differentiated and electrode shifts up to 2 cm did not
have a major effect on the classification accuracy in this
study. Hargrove et al. [14] used a setup of five electrodes
to classify 9 movements and found that shifts of 1 cm
from a training position caused a reduction of classification
accuracy by more than 30%. Hargrove et al. [15] showed that
the displacement effect can be alleviated by performing a
training in all expected displacement positions. This method
is unsuitable for commonly available electrode setups used
in prostheses since the system would have to be trained
multiple times in all expected displacement locations. Young
et al. [16], [17] used four bipolar EMG electrodes placed on
the upper and lower forearm to classify 7 hand and wrist
movements. Using input generated from different transverse
and longitudinal combinations of the four electrodes, the
classification error for a shift distance of 1 cm could be
reduced to around 15%.
It has not yet been thoroughly investigated if increasing
the number of electrode channels and recording locations
could improve the reduced classification accuracy caused by
electrode shift. With advancements in microprocessor and
signal processing technology, efficient classification of MES
recorded from an array of many high density electrodes
in an embedded system will be possible. In this study we
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Fig. 1. Experimental setup. EMG channels are enumerated column-wise starting at the ulnar bone.

investigated the classification accuracy and the effect of elec-
trode shift using a 96 channel high density electromyography
(EMG) system to distinguish 11 different hand and wrist
movements.
The paper is structured as follows. The setup of the EMG
sensor system and the conducted experiment, as well as
the signal processing and feature extraction are presented
in Section 2. The experiments are evaluated in Section 3.
Finally, Section 4 concludes the paper.

II. EXPERIMENT

A. Methods

To investigate the effect of electrode displacement in
pattern recognition based myoelectric control, an experiment
was conducted. EMG data corresponding to 11 hand and
wrist motions were acquired from one healthy normally
limbed 30 years old male subject.
The data were collected from an array of 96 electrodes
consisting of 4 rows of 24 electrodes wrapped around the
forearm. Each electrode had a diameter of 1 cm and the
center to center distance between adjacent electrodes was
about 1 cm. A reference electrode was placed on the neck.
Fig.1 illustrates the experimental setup.
A TMS International REFA 128 [18] high density EMG sys-
tem was used for data acquisition. It is capable of measuring
up to 128 monopolar EMG channels with a sample frequency
of 2048 Hz with a resolution of 22 bit. The data were saved to
files and processed by a framework of MATLAB programs.
The subject was prompted to perform 10 contractions ac-
cording to Table I. Furthermore a no movement class was
recorded. Each contraction was held for 5 seconds, followed
by a 2 seconds rest period. During the experiment 11 dif-
ferent trials were recorded, each consisting of 12 repetitions
of the same contraction. After each trial a one minute rest
period was included to avoid muscle fatigue effects. From
each contraction, 4 seconds of data from the steady state
phase were extracted. In total 12 × 4 sec = 48 seconds of
data were recorded for each movement class. The first 24
seconds were used for training the classifier, the remaining
24 seconds were used for classification.

TABLE I
HAND AND WRIST CONTRACTIONS PERFORMED DURING THE

EXPERIMENT

no. contraction no. contraction

1 extension 7 key grip

2 flexion 8 pincer grip

3 supination 9 lateral grip

4 pronation 10 hand open

5 ulnar deviation 11 no movement

6 radial deviation

B. Signal Processing

All EMG channels were low pass filtered at 500 Hz using
a 5th order Butterworth filter. The data were segmented
using a 100 ms sliding window with 50 ms increment for
feature extraction.
Four time domain (TD) features were extracted, consisting
of mean average value features (MAV, 1), wave length
features (WL, 2), zero crossing features (ZC, 3) and slope
sign change features (SSC, 4) that can be expressed as
follows:

MAV = 1
N

N
∑

n=0
xn (1)

WL =
N−1
∑

n=1
|xn+1 − xn| (2)

ZC =
N−1
∑

n=1
(sgn(xn × xn+1)∩|xn − xn+1| ≥ th) ;

sgn(x) =
{

1, if x ≥ threshold
0, otherwise

} (3)

SSC =
N−1
∑

n=2
( f ((xn − xn−1)× (xn − xn−1)));

f (x) =
{

1, if x ≥ threshold
0, otherwise

} (4)
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Fig. 3. Classification accuracies of the LDA, SVM and kNN classifier. The number of channels is shown on the X-axis, the accuracy on the Y-axis. The
system was trained using the first 24 seconds of the recorded contractions as training data, while the remaining 24 seconds were used for classification.
First, the unmodified testing data were used in (a). For (b) and (c) the testing data were shifted by 1 cm and 2 cm.

In equations (1) - (4), xn represents the EMG signal in a
segment and N denotes the length of the signal [19].
As previously indicated, the first 24 seconds of each
contraction class were used to train the pattern recognition
system while the remaining 24 seconds were used for
classification. As classifiers we used linear discriminant
analysis (LDA), support vector machines (SVM) and
k-nearest neighbor (kNN). All three classifiers have shown
good accuracies in classifying upper-limb EMG signals [2],
[20]. To simulate the electrode shift effect, the representation
of the electrode array was horizontally shifted by 1 cm and
2 cm in software. This is illustrated in Fig. 2.

Fig. 2. Illustration of electrode shift simulation. The original electrode array
during the steady state phase of an extension contraction is shown on top.
The grayscale coloring represents the RMS activity of the EMG channels.
The array is horizontally shifted by 1 cm (middle) and 2 cm (bottom) in
software to simulate electrode displacement.

III. RESULTS

We have performed the experiment to answer two specific
questions. First, does adding EMG sensors improve the sys-
tem’s classification accuracy when the electrodes are shifted?
Second, how do different classifiers perform compared with
each other? In order to answer these questions, the system

TABLE II
RULE FOR ADDING EMG SENSORS TO THE SYSTEM

# sensors adding rule

n ≤ 24 n symmetrical equally spaced electrodes from the
first row

25 ≤ n ≤ 48 complete first row and (n-24) equally spaced elec-
trodes from the fourth row

49 ≤ n ≤ 72 complete first and fourth row and (n-48) equally
spaced electrodes from the second row

73 ≤ n ≤ 96 complete first, second and fourth row and (n-72)
equally spaced electrodes from the third row

was initialized with 1 EMG sensor. Then three classifiers
(LDA, SVM, kNN) were trained in the original sensor
location. In the test phase, the system had to classify the
testing data in three cases:

1) the testing data were not shifted
2) the testing data were shifted by 1 cm
3) the testing data were shifted by 2 cm

This step was repeated 95 times, each time adding one
more EMG sensor. The rule for adding a new sensor is
described in Table II. The results are illustrated in Fig. 3.
The accuracy was calculated using cross-validation. Fig. 3 (a)
shows that using 7 sensors is sufficient for all three classifiers
to distinguish between the 11 contractions with an accuracy
of about 99% when the testing data were not shifted.
When the testing data are shifted by 1 cm (Fig. 3(b)), both
the SVM and the kNN classifier need about 32 EMG sensors
to achieve an accuracy of 99%. The accuracy of the LDA
decreases after adding more than 32 channels.
Shifting the testing data by 2 cm (Fig. 3(c)) causes the SVM’s
and the kNN’s accuracy to drop significantly. Using more
than 40 sensors results in an average accuracy between 50
and 60%. The LDA’s accuracy constantly decreases below
20% with additional sensors.
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IV. DISCUSSION

Our results indicate that a higher robustness to electrode
displacement in upper-limb prostheses may be gained by
adding more EMG sensors to the system. Using SVM or
kNN classifiers, about 32 sensors are needed to compensate
the electrode displacement effect if the electrodes are shifted
by 1 cm. Shifting the electrodes by 2 cm caused the SVM’s
and kNN’s accuracy to drop below 60%. Here, further
optimizations are necessary to enable reliable prosthesis
control. Investigations must also be carried out aiming at
identifying realistic amount of electrode shift during upper-
limb prosthesis usage.
Our future study will consider reducing the amount of sen-
sors and repeating the experiment with upper-limb amputees
to gain a better understanding of the correlation between
classification accuracy and actual prosthesis usability and
robustness.
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