
  

 

Abstract—Targeted muscle reinnervation (TMR) is a 
surgical technique that creates myoelectric prosthesis control 
sites for high-level amputees. The electromyographic signal 
patterns provided by the reinnervated muscles are well-suited 
for pattern recognition (PR) control. PR control uses more 
electrodes compared to conventional amplitude control 
techniques but their placement on the residual limb is less 
critical than for conventional amplitude control. In this 
contribution, we demonstrate that classification error and real-
time control performances using a generically placed electrode 
grid were equivalent or superior to the performance when 
using targeted electrode placements on two transhumeral 
amputee subjects with TMR. When using a grid electrode 
layout, subjects were able to complete actions 0.290 sec to 1 sec 
faster and with greater accuracy as compared to clinically 
localized electrode placement (mean classification error of 
1.35% and 3.2%, respectively, for a 5 movement-class 
classifier).These findings indicate that a grid electrode 
arrangement has the potential to improve control of a 
myoelectric prosthesis while reducing the time and effort 
associated with fitting the prosthesis due to clinical localization 
of control sites on amputee patients. 

I. INTRODUCTION 

Major upper-limb amputation is a significant cause of 
disability in the US that affects over 41,000 individuals [1]. 
Currently, prosthetic devices are the most effective means of 
treatment. The advent of myoelectric prostheses provided 
amputees with more intuitive  means of controlling  their 
artificial limb than with traditional body-powered prostheses.  
This capability is achieved by translating electromyographic 
(EMG) signals from residual-limb muscles into motor 
prosthesis commands. Typically, the amplitude of the EMG 
signal recorded from an appropriate muscle site is used to 
directly control the actuator of the corresponding joint in the 
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prosthesis[2]. Although this type of “direct” control has 
gained clinical acceptance, it is fraught with some significant 
shortcomings. Due to limited independence of EMG signal 
sources, the practical capability of “direct” control remains 
limited to 2 degrees of freedom [3]. Additionally, “direct” 
control is neither naturalistic or  intuitive in some 
circumstances, as it requires that users avoid co-contracting 
their muscles when they wish to achieve smooth control of 
the prosthesis and then actively co-contract in order to switch 
control between the available degrees of freedom.   

Two major advances in the field have provided the means 
of achieving more intuitive control of a myoelectric 
prosthesis. The first is the Targeted Muscle Reinnervation 
(TMR) surgical procedure which transfers the nerves from an 
amputated limb to biomechanically non-functional muscles.  
The reinnervated muscle then becomes a biological amplifier 
of the nerves from the amputated limb and provides a 
convenient site for EMG recording [4]. A key benefit of 
TMR is that it offers the means for intuitive, physiologically 
appropriate simultaneous control of multiple degree of 
freedom prostheses while using “direct” control scheme as 
described earlier. The other major advancement in the field is 
the adoption of alternative prosthesis control algorithms such 
as pattern recognition [5, 6]. Pattern recognition predicts 
desired limb motion based on the patterns embedded within 
the EMG signals recorded from multiple sites on the 
amputee’s residual limb. The use of pattern recognition with 
TMR subjects provides accurate and naturalistic control of a 
myoelectric prosthesis for high-level, upper-limb amputee 
patients [4].  

In contrast to pattern recognition control, conventional -  
“direct” - EMG control of myoelectric prosthesis requires 
precise placement of bipolar electrode pairs over the 
reinnervated muscle sites, such that the measured EMG has 
very little muscle crosstalk.  Pattern recognition controllers, 
however, do not require that the EMG signals be free from 
cross-talk [7]. The pattern recognition algorithm simply 
requires a set of unique EMG patterns for classification of 
each motion.  As such, the physical location, or source, of the 
pattern is irrelevant as long as the patterns are unique [8].   
Evaluating the number of EMG channels and their locations 
has been previously investigated for transradial amputees [9] 
and TMR patients [10] using high-density electromyography 
with channel reduction.  These previous results from TMR 
patients suggest that there is a significant benefit of strategic 
placement of electrodes over the reinnervated muscle sites 
when up to 16 movements are recognized by the classifier. It 
is, however, unclear whether this holds true if fewer motions 
are controlled.     
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In this study, we compared the effect of using a generic, 
array-type electrode placement to conventional, precise 
electrode placement on the performance of pattern 
recognition-based prostheses control by transhumeral 
amputees with TMR in a virtual environment.  

II. METHODS 
A. Data Collection 

Surface EMG recordings were collected from two trans-
humeral amputee subjects – subjects TH1 and TH2. Both 
subjects have undergone TMR surgery following their initial 
amputation procedure. The long head of the biceps and the 
long head of the triceps remained normally innervated, 
whereas the short head of the biceps and the lateral head of 
the triceps were reinnervated. This yielded four total direct 
control sites (one normally innervated and one reinnervated 
site on both the biceps and triceps) for each subject. 
Ag/AgCl surface EMG electrodes (Bio-Medical 
Instruments) were used to record EMG. The study consisted 
of two conditions. In the first condition (“DC Site”)  eight 
bipolar pairs of EMG electrodes were placed over each of 
the subject’s 4 direct control sites (4 DC Sites) and over 4 
additional sites adjacent to those (8 DC Sites)  using the 
localization procedure suggested by Huang et al [10]. Direct 
control sites were localized by clinical best practices and the 
inter-electrode distance was 15-30 mm (Fig. 1a). In 
condition 2 (“Grid”), 15 individual EMG electrodes were 
arranged in a grid around the residual limb of each subject 
as to provide equidistant coverage of the limb (Fig. 1b). The 
grid was arranged in 3 rings of 5 electrodes. The 5 
electrodes in each ring were distributed circumferentially 
around the residual limb. Each ring was offset relative to the 
other ring along the long axis of the limb. Spacing between 
each ring as well as spacing between each electrode within 
the ring was based on the geometry of the patient’s limb and 
computed to provide equidistant placement of electrodes. 
Grid electrodes were paired to create 15 bipolar EMG 
channels. Pairings were organized along the long axis of the 
residual limb, connecting electrodes on adjacent rings (ring 
1 electrodes connected to ring 2 electrodes and ring 2 
electrodes, connected to ring 3 electrodes) with inter-
electrode distances ranging 30-60 mm. 10 electrode pairings 
were made in this manner. An additional 5 pairings were 
created by connecting electrode sites that were diagonally 
offset from each other (Fig. 1b) with inter-electrode 
distances ranging 80-100 mm. 

Training and testing data were recorded for nine 
movement classes: wrist pronation, wrist supination, wrist 
flexion, wrist extension, hand open, hand close, elbow 
flexion, elbow extension, and a relaxed (or no motion) class. 
Subjects performed contractions for 3s in each of eight 
repetitions, producing a total of 12s of training data and 12s 
of testing data per movement class with each of the two 
electrode configurations. 

EMG signals were preprocessed by amplification and 
high-pass filtering (20 Hz cutoff frequency). Data were 
segmented into 250ms windows with 50ms of overlap [11]. 
TD (Time Domain) and AR (Autoregressive) features were 
extracted from the EMG signals. The TD feature set 

included mean absolute value, zero crossings, slope sign 
changes, and waveform length. The AR feature set included 
the six coefficients of a 6th order autoregressive model, 
which was selected based on previous related work [12]. 
Linear discriminant analysis (LDA) was used for pattern 
recognition control (feature classification) because of its 
computational efficiency and its accuracy is comparable to 
other classification techniques. A 9 movement-class (MC) 
classifier (all movements), a 7 MC classifier (excluding 
wrist pronation and supination) and a 5 MC classifier 
(excluding wrist pronation, supination, flexion and 
extension) were trained using recorded data.  

We used a Target Achievement Control (TAC) test to 
evaluate real-time control performance of subjects using the 
five-class classifier. The TAC test prompts the user to move 
a virtual hand to designated postures while providing real-
time visual feedback of the virtual arm’s position. Full 
description of this test is provided elsewhere [13]. In this 
study, each prompted posture required the user to perform 
two sequential motion classes, but all five classes were 
active at all times. Each target posture required subjects to 
move the virtual prosthesis through 75⁰ of motion for both 
DOF into a target zone designated by a grey outline of a 
virtual limb. Once there, the virtual limb changed color, 
instructing subjects to maintain the prompted posture within 
the target zone. For successful completion of a trial, subjects 
had to reach the prompted posture with a 20 second time 
window and maintain that posture within a 30⁰ tolerance for 
1 second. During the TAC tests, we imposed a decision-
based velocity ramp on our controller to minimize the effect 
of unintended movements. The ramp functions by 
attenuating movement speed following a change in classifier 
decision[14]. One test consisted of 4 repetitions for each 
possible target posture. One TAC test was performed with 
electrodes arranged in the grid configuration and one TAC 
test was performed with electrodes placed over reinnervated, 
direct control sites. 
   A          B 

 
     DC Site Condition    Grid Condition 
 
Fig.1 Posterior view of electrode placement for (a) clinical configuration 
targeting reinnervated, direct control sites (experimental condition “DC 
Site”) and (b) grid placement (experimental condition “Grid”). Solid line 
connections represent differential bipolar electrode pairs, and lighter ovals 
represent clinical direct control sites. In the DC Site configuration (a), 8 
bipolar pairs of adhesive electrodes were placed at 4 direct control sites. In 
the Grid configuration (b), 15 adhesive electrodes were evenly spaced in a 
5x3 grid around the circumference of the residual limb without regard to 
direct control sites. Fifteen differential bipolar pairs were used: 10 oriented 
axially along the length of residual limb, 5 oriented obliquely. 
 

B. Data Analysis 
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TAC test performance was evaluated using two measures: 
completion rate and completion time. Completion rate is 
defined as the percentage of trials successfully completed 
and completion time is defined as the average time across all 
motions to complete a trial. We thus assess controllability of 
the virtual prosthesis by evaluating the completion rate as a 
function of completion time. 

In addition to evaluating TAC test performance we also 
evaluated LDA classification error of the 5 MC classifier as 
well as 7 and 9 MC classifiers. Four fold cross validation 
was used to evaluate offline classification error.  

Lastly, we performed sequential forward selection (SFS) 
to determine the optimal number of EMG channels in an 
electrode grid (i.e. grid size). In this analysis, classification 
error was assessed for each type of the classifier (5, 7 and 9 
MC classifiers) as the size of the set of EMG channels used 
by the classifier varied from 1 channel to 15 channels.   

 
III. RESULTS 

A. Real time performance of virtual prosthesis control 
Both subjects achieved 100% trial completion rate for the 

TAC test. This is not unexpected as both subjects are 
experienced users of myoelectric prostheses and are also 
experienced users of pattern recognition control. However, 
subject TH2 was able to reach prompted postures faster (1 
second faster on average) when EMG electrodes were 
arranged in a grid pattern as compared to when EMG 
electrodes were positioned over the reinnervated, direct 
control sites (Fig. 2). Both subjects TH1 and TH2 reached 
the prompted postures faster when EMG electrodes were 
arranged in a grid configuration (290ms and 1s faster on 
average, respectively). Statistical analyses were not made 
due to the small sample size.  
 

 
Fig.2 Completion rate curves for the two conditions. Solid line indicates 
performance during condition 2 (Grid) trials and dashed lines indicate 
performance during condition 1 (DC Sites). Lines in black show subject 
TH1 data and lines in grey show subject TH2 data. The data shown 
represents pooled completion rates and times from all possible postures and 
repetitions.  

B. Classification error for 5, 7 and 9 MC classifiers 
 Consistent with the trend seen in the controllability of the 

virtual prosthesis, the classification error of the 5 MC 
classifier used during the TAC test for subject TH1 was 
lowest when EMG signals were acquired from electrodes 
arranged in a grid pattern as compared to electrodes placed 
over direct control sites (Fig. 3A). Classification error for a 

5 MC classifier for subject TH2 was low across all electrode 
configurations, but marginally (1.2%) higher for the grid 
compared to the targeted configurations.  

We also evaluated the classification error for 7 and 9 MC 
classifiers, for both subjects. The results were consistent for 
both subjects, indicating reduced classification error when 
electrodes are arranged in a grid as compared to direct 
control sites.  Classification error was highest when 4 
bipolar electrode pairs located at direct control sites were 
used. Classification error was slightly lower when 8 instead 
of the 4 bipolar electrodes were used and the error was 
lowest when grid electrode configuration was used by the 
classifiers (Fig. 3). 

 
Fig.3 Real-time classification error of the 5, 7 and 9 MC classifiers. Data is 
shown for subject TH1 (A) and TH2 (B) and for both experimental 
conditions. Black bars represent classification error when 15 EMG 
electrodes were arranged in a grid. TH1 grid configuration errors for 5,7 and 
9 MC classifiers were: 1.4%, 1.9% and 5.9% respectively. TH2 errors were: 
1.3%, 2.3% and 3.3%, respectively. Grey bars indicate classification errors 
from 8 bipolar electrodes placed at 4 direct control sites. TH1 direct control 
site errors for 5,7 and 9 MC classifiers were: 4.3%, 5.8% and 6.2% 
respectively. TH2 errors were: 0.1%, 3.9% and 7.6%, respectively. White 
bars show classification errors from using 4 of the 8 bipolar electrodes 
placed at the direct control sites. TH1 errors for 5,7 and 9 MC classifiers 
were: 6.3%, 7.2% and 9.3% respectively. TH2 errors were: 0.1%, 4.7% and 
10.1%, respectively. 

Although a 15 electrode grid minimizes classification 
error of an LDA classifier for 5, 7 and 9 classes of 
movement, the additional number of channels in the grid 
imposes a higher computational cost than the 8 or 4 bipolar 
electrodes at the direct control sites.  Computational power 
of the currently available microprocessors likely alleviates 
this concern. Nonetheless, we performed a channel 
reduction analysis to evaluate the relationship between 
classification error and the number of electrodes used by the 
classifier.  The results of this analysis demonstrated that 
classification error plateaus at a subset of 7 channels for the 
three types of classifiers, for both subjects (Fig. 4). The 
subset of 7 channels was composed of both cross-paired as 
well as longitudinally paired electrodes (Fig. 1B).    
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Fig.4 Classification error of the 9, 7 and 5 MC classifiers as a function of 

the number of channels used for both subjects TH1 (A) and TH2 
(B).Demonstrated classification error is computed based on the optimal 
subset of channels, for channel subsets ranging in size from 1 to 14. 
Classification errors of the 9 MC classifier are shown in solid black line and 
the 7 MC classifier are shown in punctuated dark-grey line. The solid light 
grey line demonstrated the classification errors of a 5 MC classifier.   

IV. DISCUSSION 

This pilot study demonstrated that pattern recognition 
control does not require precise placement of electrodes over 
the conventional, “direct” control muscle sites in TMR 
patients. Our results demonstrate that 15 electrodes, evenly 
distributed along and around the residual limb, will yield 
control accuracy and motion completion times that are on 
par or superior to what can be achieved via precise electrode 
placement over direct control sites. Furthermore, our results 
also suggest that the number of channels used may be 
dynamically reduced using an automated algorithm to 7 
electrodes, which decreases classification error and 
computational cost. Such a technique could be easily 
incorporated into a myoelectric controller to optimize the 
use of a 15 electrode grid.  These are important results, as 
the use of an electrode grid is substantially easier to 
implement clinically than targeted placement of electrodes.  

The results of this study differ from those presented 
previously [15], which indicated benefit of using electrodes 
located directly over the TMR control sites.  The inter-
electrode distances used in [10] (15-20 mm)  were smaller 
than those used in this study (30-100 mm).  We have shown 
previously that larger inter-electrode distances significantly 
reduces classification accuracies [16] presumably because 
more of the underlying muscles are sampled. This, along 
with investigating fewer motions (9 movement classes as 
opposed to 16) may have led to the discrepancy in the 
findings.  

Notable limitations of this pilot study include the small 
subject sample size, small number of movement trials and 
controllability assessment limited to 5 movement classes. 
Future work will focus on collecting a larger pool of 
classifier performance data for a broader set of movements, 
including simultaneous movement sequences. Analogous to 
the grid channel reduction analysis presented in the current 
study, grid feature reduction analysis will also be performed 
to further evaluate the means of reducing classification 

error, computation cost, and optimize grid size and 
configuration. 

Our findings have significant implications as they offer a 
practical, cost effective means to increase transhumeral 
amputee patient access to myoelectric prostheses by greatly 
reducing the complexity and costs associated with fitting 
amputees with myoelectric devices. Our findings also 
indicate that a grid electrode arrangement also has the 
potential to offer greatest possible classification accuracies 
through utilization of channel optimization algorithms.    
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