
 

 

 

 

 
Abstract—In this paper we explore how a Radio Frequency 

Impedance Interrogation (RFII) signal may be used as a 

biometric feature. This could allow the identification of 

subjects in operational and potentially hostile environments.  

Features extracted from the continuous and discrete wavelet 

decompositions of the signal are investigated for biometric 

identification. In the former case, the most discriminative 

features in the wavelet space were extracted using a Fisher 

ratio metric. Comparisons in the wavelet space were done using 

the Euclidean distance measure. In the latter case, the signal 

was decomposed at various levels using different wavelet bases, 

in order to extract both low frequency and high frequency 

components. Comparisons at each decomposition level were 

performed using the same distance measure as before. The data 

set used consists of four subjects, each with a 15 minute RFII 

recording. The various data samples for our experiments, 

corresponding to a single heart beat duration, were extracted 

from these recordings. We achieve identification rates of up to 

99% using the CWT approach and rates of up to 100% using 

the DWT approach. While the small size of the dataset limits 

the interpretation of these results, further work with larger 

datasets is expected to develop better algorithms for subject 

identification. 

 

I. INTRODUCTION 

The cardiosynchronous signal obtained through Radio 
Frequency Impedance Interrogation (RFII) is a non-invasive 
method for monitoring hemodynamics, specifically heart rate 
(HR) and heart rate variability, using a dipole resonant 
coupling method (see [1-3] for further details of the device). 
Biometric identification of subjects through the use of such a 
cardiosynchronous signal in operational environments would 
be highly desirable as it would enable real-time confirmation 
of a subject’s identity prior to extraction from a potentially 
hostile situation [1-3]. It is a less intrusive technique 
compared to an ECG based biometric solution [4-5]. The use 
of RFII is being investigated for use as a non- invasive 
hemodynamic monitoring system and in the capacity of a 
biometric identifier. In this paper, two methods for biometric 
feature extraction and identification from these signals, are 
explored. One method is to identify the subject by extracting 
features found in the continuous wavelet transform (CWT) 
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spectrogram. The second method is to extract features from 
the discrete wavelet transform (DWT) decomposition at 
various levels and identify the subject based on these 
features. This study is performed on data samples extracted 
from four different 15 minute long RFII recordings, 
corresponding to four different subjects. The aim in this 
paper is to identify subjects using a recording of as short a 
duration as possible. For either case, identification 
experiments were performed on data samples over the 
duration of a single heart beat.  

II. METHODS 

A. Feature Extraction by Continuous Wavelet Transform   

The data samples for this experiment, for each of the 500 
most discriminating features for each subject were learned 
using 30 examples of the spectrogram from the subject. 100 
spectrograms of each subject from a different portion of the 

Biometric Identification of Cardiosynchronous Waveforms Utilizing 

Person Specific Continuous and Discrete Wavelet Transform Features 

                       
Figure 1:  Morlet mother wavelet function 
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Figure 2:  Example Continuous Wavelet Transforms of RFII signal from two 
subjects 
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RFII signal were then identified. The continuous wavelet 
transform (CWT) was used to decompose a signal into scaled 
and shifted functions based on a mother wavelet function  . 
The transform itself is defined as: 
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This provides a time-frequency characterization (that we 

will call a spectrogram) that can be used in identifying the 

subject. Many types of continuous wavelets exist, however, 

the wavelet that has produced the best results for 

identification so far has been the Morlet wavelet [4,6] 

defined by the mother wavelet 
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with   being the central frequency of the mother wavelet 
(see Fig. 1). The continuous wavelet transform (CWT) 
cannot be performed on individual heartbeat signals as the 
length of the signal is too small to expose the identifying 
information. To overcome this, a portion of the RFII signal 
large enough to have the desired number of heartbeats is 
taken and the CWT is applied. The individual heartbeats are 
segmented from the signal and the corresponding portion of 
the transformed signal is extracted. Fig. 2 shows different 
subjects have differently shaped spectrograms allowing 
identification to be performed. Identifying spectrogram 
features were extracted from each query and compared to the 
template features from training data. Using all the features in 
the spectrogram is not desirable as it requires the storage of 
large spectrograms.  Further, the use of all features in the 
spectrogram reduces accuracy of identification due to the fact 
that certain areas of the spectrograms are similar across 
subjects. By focusing on the most discriminative portions of 
the spectrogram for each subject the identification rate can be 
improved greatly. The Fisher ratio was used to select the 
most discriminative features, and is defined as: 
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where    and    denote the means and    and    denote the 
standard deviations for the two distributions. By maximizing 
the Fisher ratio, the means of the distributions were separated 
and the variances were minimized. One subject was selected 
as coming from one distribution and all other subjects as 
coming from a different distribution. This allowed the most 
discriminative features in that subject to be selected by 
maximizing with a large Fisher ratio (Fig. 3). To identify a 
query spectrogram, each feature mask was applied to the 
spectrogram resulting in a feature vector corresponding to 
each subject. The query was identified as the subject whose 
mean feature vector was nearest to the corresponding features 
from the query (see Fig. 4 and Fig. 5). While any distance 
metric could be used but for simplicity, the    norm was used 
for this study. 

B. Discrete Wavelet Transforms and Wavelet Packet 

Decomposition 

Another set of features extracted from the RFII signals 
uses coefficients from the discrete wavelet transform (DWT)  

 
of the signal [7]. For a given discrete signal     , the discrete 
wavelet transform is given by: 
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where     and      are the low-pass and high-pass filters of 
the wavelet decomposition, respectively.  An illustration of 
the typical wavelet decomposition tree is shown is Figure 
6.This decomposition is similar to the CWT decomposition 
described in the previous section, with the difference that it 
uses a dyadic tree structure for decomposition. At each node 
of the tree, the signal is projected onto a pair of ortho-normal 
wavelet basis functions and down-sampled by two. One of 
the resultant signals contains the approximation (i.e. low 
frequency content) while the other contains the details (i.e. 
the high frequency content). Thus the number of data samples 
at each level of the tree is the same as the length of the 
original signal. In a typical DWT analysis of the signal, every 
node is further sub-divided into a child approximation and 
child detail node. Here a wavelet packet decomposition of the 
signal was performed [8-9]. In this case, the detail nodes are 
also projected onto the wavelet bases.  Fig. 7 shows the 
approximation and detail information for a sample from class  

 

(a) 

 

(b) 

Figure 3:  The two histograms give an approximation of the distribution of a 

feature taken from subject 1 on the left and all other subjects on the right. 

(a) shows the separation of the two distributions in a good feature selected 

while (b) shows the lack of separation for a non-optimal feature 
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one (i.e. subject 1; in this paper we use the terms class and 
subject interchangeably), for one level of wavelet 
decomposition using the Haar wavelet. The slow variations 
are captured in the former while the high frequency content is 
accentuated in the latter. Each signal undergoes 10 levels of 
decomposition under each of the wavelet bases. The 
Euclidean distance metric between decomposition levels of 
two samples is used as the similarity metric between them.  

 

Figure 6: Two levels of DWT decomposition of a signal     with a low pass 
filter      and a high pass filter     . The circles represent down sampling 
the resulting signal by 2. 

 

 
(a) 

 
(b) 

Figure. 7: Data samples from (a) class 1 and (b) class 2 in our dataset 

corresponding to one heart beat duration. 
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(b) 

 

(c) 

Figure 8: (a) shows the signal that is decomposed into (b) and (c), (b) shows 
the approximation coefficients for one of the user RFII signals, where the 
slow variations in (a) are captured and (c) shows the detail coefficients which 
captures the high frequency variations of the signals. These coefficients are 
for one level of DWT decomposition using haar wavelet bases. 

 

Figure 4:  Feature mask for subject 1 (500 features selected) 

 

  

  
 

Figure 5:  Feature masks for subject 1(top left), 2 (top right),  

3 (bottom left), 4 (bottom right) 
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User identification may be performed by determining the 

Euclidean distance between two data samples and searching 

for the pair with minimum distance. As mentioned earlier, 

the data samples we use for our experiments correspond to 

one heart beat duration in the RFII signal. This, for example, 

corresponds to 600 sample points in Fig. 8(a). These sample 

points were extracted between the low to high transitions in 

the signal. Examples of data samples from class 1 and from 

class 2 in our dataset are shown in Fig. 7. 

III. RESULTS 

A. CWT Identification 

The 500 most discriminating features for each subject are 
learned using 30 examples of the spectrogram from the 
subject. One hundred spectrograms of each subject from a 
different portion of the RFII signal are then identified. 
Different wavelets were used to identify the spectrogram. 
The Morlet wavelet performed best, identifying 99% of the 
spectrograms correctly. The 4 spectrograms that were 
misidentified look to be a result of bad segmentation of the 
data as they are not registered correctly like the rest of the 
spectrograms are. This can be overcome in the future with 
better segmentation algorithms. Nine types of wavelets with 
varying parameters were examined for a total of 45 different 
wavelet configurations. All wavelets were generated using 
MATLAB's cwt function. For brevity, only the best 
performing wavelet in each type is shown in Table I. 

TABLE I.  RESULTS OF CWT IDENTIFICATION 

Wavelet (MATLAB cwt 

parameter) 
Accuracy 

Morlet (morl) 99% 

Daubechies (db7) 95.75% 

Biorthogonal (bior2.8) 95.5% 

Meyer (meyr) 88.5% 

Mexican Hat (mexh) 66% 

Discrete Meyer 95.25% 

Reverse Biorthogonal (rbio1.5) 98.5% 

Symlet (sym7) 95% 

Coiflet (coif4) 88.75% 

 

B. DWT Identification 

Various levels of DWT decomposition of the signals are 

used in order to differentiate between data samples of the 

four classes, as was described in section II.B. The data 

samples used here correspond to one heart beat duration of 

an individual as mentioned earlier. We have 188 such 

samples for each of the four classes in our database. 

Using the Haar, Daubechies 2, 5, and 10, the biorthogoanl 

2.8, 3.5, and 5.5 wavelets all resulted in a 100% 

identification rate at 2, 5, and 10 levels of wavelet 

decomposition. 

IV. CONCLUSION 

Both the CWT and the DWT methods show high 
accuracy in identifying a subject from a single heartbeat. In 
particular, DWT demonstrated remarkably robust subject 
identification in this small dataset.  These results suggest that 
there are identifying features in the temporal-frequency 
domain that are exposed once a wavelet transform is applied. 
While this shows promise for identification of a subject using 
wavelet decomposition, the small size of the dataset limits the 
interpretation of the results. Further work with larger datasets 
will allow us to test the proposed algorithms and show more 
statistically significant results. 
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