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Abstract—Constructing statistical models of electrocardiogram
(ECG) signals, whose parameters can be used for automated
disease classification, is of great importance in precluding manual
annotation and providing prompt diagnosis of cardiac diseases.
ECG signals consist of several segments with different morpholo-
gies (namely the P wave, QRS complex and the T wave) in a single
heart beat, which can vary across individuals and diseases. Also,
existing statistical ECG models exhibit a reliance upon obtaining
a priori information from the ECG data by using preprocessing
algorithms to initialize the filter parameters, or to define the user-
specified model parameters. In this paper, we propose an ECG
modeling technique using the sequential Markov chain Monte
Carlo (SMCMC) filter that can perform simultaneous model
selection, by adaptively choosing from different representations
depending upon the nature of the data. Our results demonstrate
the ability of the algorithm to track various types of ECG
morphologies, including intermittently occurring ECG beats. In
addition, we use the estimated model parameters as the feature
set to classify between ECG signals with normal sinus rhythm
and four different types of arrhythmia.

I. INTRODUCTION

Electrocardiogram (ECG) signals are temporal recordings

of electrical activity of the heart generated by the continuous

depolarization and repolarization of cardiac cells. Detection of

abnormalities in the ECG signals by manual examination can

present a lot of difficulties, especially in long ECG recordings,

such as Holter ECGs. However, construction of ECG signal

models and use of the model parameters to perform automated

disease classification can circumvent the need for manual

annotation.

Several modeling methods using signal processing tech-

niques have been proposed to describe ECG signals by means

of orthonormal basis functions [1], autoregressive modeling

[2] and linear prediction [3], among others. Delineation of the

ECG signals was carried out to determine the position of the

various ECG fiducial points and these were modeled using

polynomial functions in [4], [5] and Hermite polynomials in

[6], [7]. These approaches were limited by the fact that the

shapes of the fiducial points depend upon individuals and their

cardiac health, and thus a single mathematical representation

cannot be used for their characterization. The dynamical

nature of the ECG signals was exploited in [8], wherein

the ECG signal was represented as a sum of five Gaussian

functions. The parameters of the Gaussian functions were

estimated in [9], [10] by constructing a statistical framework
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and using an extended Kalman filter (EKF) for parameter

estimation. However, the model was not robust to initialization

errors and non-linear solvers had to be used to determine

the initialization parameters. Also, the presence of abrupt

morphological changes in the ECG signal led to modeling

errors. The representation of the ECG signal as a summation

of multiple harmonics formed the basis for the dynamical

model presented in [11], [12], wherein the model parameters

represented by the harmonic coefficients and other cardiac

signal attributes were estimated using both an EKF and a

marginalized particle filter (PF). But this model relied upon

the availability of a priori information such as the number of

harmonics, and user-defined parameters such as the parameter

noise variances, the values of which can vary greatly across

different cardiac diseases as well as patients.

In order to avoid the aforementioned issues associated

with existing ECG signal models, we propose a novel ECG

model based on the sequential Markov chain Monte Carlo

(SMCMC) filter [13] which can also simultaneously choose

between different available models to represent the data.

We adaptively delineate the dynamically varying ECG signal

into windows, which represent a set of ECG samples during

which a static model parameter assumption can hold good, in

compliance with the SMCMC filter assumption that the model

parameters are not time-varying. Within each window, the

ECG signal is modeled using three different models, namely

linear, quadratic and cubic polynomials, and the static model

parameters represented by the polynomial coefficients are

estimated sequentially. At the end of each window (determined

adaptively based on the model likelihoods), the ECG signal is

reconstructed using the estimates from each model weighted

by the model probabilities. Using real ECG data, we show that

the algorithm can successfully track (model) different types

of ECG signals without requiring preprocessing steps or a

priori information. We demonstrate the superior performance

of our algorithm compared to the Gaussian ECG model [9],

[10] for abruptly changing ECG morphologies, and finally use

the estimated ECG signal parameters to distinguish between

five different types of ECG signals.

II. SEQUENTIAL MONTE CARLO MARKOV CHAIN FILTER

AND MODEL SELECTION

Particle filtering [14] is a sequential Bayesian approach, in

which, the unknown state of a nonlinear dynamical system

is determined by estimating its posterior probability density

function (pdf), represented by a set of particles with associated

weights, using the observed measurements or data. However,

if the system or model parameters are assumed to be static,
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the sequential importance sampling (SIS) particle filtering

approach has to be combined with MCMC methods (forming

the SMCMC filter) in order to preserve the stability of the

particle algorithm [13]. This is accomplished by rejuvenation

of the particles, for every few samples of data that constitute

a batch of size n, depending on the outcome of a rejuvenation

test.

Assuming that at time step k, the posterior pdf p (x|Zk)
of the unknown state x (not dependent on k because of

the static assumption) is represented by the particle-weight

pairs {(xj , wk,j)}
Ns

j=1
, where Zk = [z1, . . . , zk] is the set of

measurements upto time k and Ns is the number of particles,

the first step in the SMCMC filter is to update the particle

weights using SIS, as [13] (shown here for time step k + n),

wk+n,j ∝ p (zk+1, . . . , zk+n|xj ,Zk)wk,j . (1)

In order to prevent degeneracy and preserve stability, a rejuve-

nation test is performed next using the Kullback-Leibler (KL)

distance [13]. If the KL distance falls below a threshold τ1,

in the final step, the independent Metropolis-Hastings (IMH)

is used as the MCMC method of choice to generate a new set

of particles and weights using the Gaussian proposal density,

N (x;µ
x
,Σx). The mean µ

x
and covariance Σx of the

Gaussian proposal distribution are obtained using the particles

values and their corresponding weights [13]. The rejuvenated

particles are then used to estimate the unknown posterior pdf

of x.

When model selection is used along with the SMCMC

filter, assuming that there are M models, {H1, . . . , HM}, the

posterior density is now given by [13],

p (x|Zk) =

M∑

i=1

P (Hi|Zk)p (x
i|Zk, Hi) , (2)

where x
i is the state vector, P (Hi|Zk) is the model probabil-

ity, and p (xi|Zk, Hi) is the posterior pdf for x given model

i (for i = 1, . . . ,M ). The model probability and posterior

pdf are both updated sequentially using the model likelihood

p (zk+1|Zk, Hi) and SIS, respectively [13].

III. ECG SIGNAL MODELING AND CLASSIFICATION

In order to describe the dynamically varying ECG signal

with changing morphologies, we use three different time-

domain polynomial function models. The coefficients of these

polynomials are the unknown parameters of the system, and

are estimated using the SMCMC filter performing simul-

taneous model selection. We assume that the polynomial

coefficients are static over short periods of time (windows).

This assumption can be viable over segments of the ECG

signal such as the P wave, QRS complex, ST segment, etc.

We adaptively delineate the ECG data into windows (which is

a set of samples over which model parameters are constant)

using the model likelihood function. A window ends when the

model likelihood falls below a certain threshold τ2 and the

models with their corresponding static parameters, no longer

describe the data correctly.

A. State-space Model Framework

With the assumption that the signal parameters are constant

within a given window l (where l = 1, . . . , L, and L is the

total number of windows), each sample of the ECG signal is

represented as a polynomial of order M with M+1 unknown

coefficients as,

zk,l =
M∑

m=0

al,m tmk,l + vk . (3)

In the above equation, zk,l represents each ECG sample in

window l and tk,l = klTs is the discrete time at the kth

sample in the lth window. The measurement noise vk is

assumed to be white Gaussian with zero mean and covariance

R. The unknown coefficients of the M th order polynomial

form the state vector xl in the lth window given by, xl =
[al,0 al,1 . . . al,M ]T . To differentiate between the state vector

for each model, we assume that in general, for a polynomial

of order M , only the first M + 1 terms in xl are non-zero.

The state model is simply given by,

xk,l = xl . (4)

In order to adaptively delineate the ECG data, the model

likelihood p (zk+1,l|Zk+1,l, Hi,l) is computed sequentially,

compared to a threshold τ2, and if it falls below this value,

a new window l + 1 is started by reinitializing the particles

and their weights. At the end of the window, the signals are

reconstructed and fit to the ECG data using the polynomial

coefficient estimates at the last sample of the window since

these denote the best estimates of the parameters.

B. Arrhythmia of the Heart and Classification

The electrical activity during each ECG beat originates from

the depolarization of the pacemaker cells in the sinus node lo-

cated at the top of the right atria, and propagates through all the

chambers of the heart. Arrhythmia indicates a disturbance in

the rate, regularity, site of origin, or conduction of the cardiac

electrical activity [15]. In this work, we consider four types

of arrhythmia for classification and comparison with normal

sinus rhythm (N) signals, namely, the left bundle branch block

(L) and right bundle branch block (R), which are two types

of conduction block arrhythmias caused when the propagating

electrical activity meets with unexpected delays along its path,

and the ventricular escape (E) and junctional escape (j) beats,

which are two types of escape rhythm arrhythmias caused

when the electrical activity does not originate from the sinus

node.

We utilize a simple Bayes maximum-likelihood (ML) clas-

sifier that uses the estimated model parameters as its features

to perform classification. The features in our work are given

by the reconstructed (estimated) signals that are computed

using the parameter estimates for each ECG beat. In order to

limit the dimension Nβ of the feature vector β, we form the

feature vector using five points chosen from around the QRS

complex and one additional point corresponding to the mean

of the P wave samples, thus making Nβ = 6. The Bayes ML
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classifier is based on maximizing the likelihood of the feature

vector p (β|Cq) conditioned on the given class Cq (where

q = 1, . . . ,Q, and Q is the total number of classes), which is

assumed to be a multivariate Gaussian distribution. Thus, the

classifier output is given by, C∗

q = argmaxq log (p (β|Cq)).
Here, the number of classes is Q = 5.

IV. SIMULATION RESULTS

In order to validate our algorithm and demonstrate its perfor-

mance, we use real ECG data from the MIT-BIH arrhythmia

database [16]. All signals are sampled at 360 Hz. We first

process the ECG data using a lowpass filter to remove baseline

wander and powerline interference as shown in [17]. Then the

data is divided into beats using the peak location provided by

the MIT-BIH arrhythmia database, since we wish to classify

each data beat into the appropriate arrhythmia class. The

parameters of each beat are estimated as described in Section

III-A.

The tracking capability of our algorithm is shown in Fig. 1,

that depicts the reconstructed ECG signal plotted against

the original ECG data. Fig. 1(a), 1(c) and 1(d) show the

results for normal sinus rhythm (N), ventricular escape (E)

and junctional escape (j) type beats. It is observed that our

algorithm can accurately reconstruct ECG signals of different

morphologies, including those with abruptly occurring beats

such as premature ventricular contraction (PVC), as seen in

Fig. 1(b). Such type of signals were not tracked using the

Gaussian ECG model presented in [9], [10].
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Fig. 1. Original and reconstructed ECG data using SMCMC filter and model
selection for beat types with: (a) Normal sinus rhythm (N); (b) Left bundle
branch block (L), Premature ventricular contraction (V) and right bundle
branch block (R); (c) Ventricular escape (E); and (d) Junctional escape (j).
The letters in the square boxes indicate the beat labels.

We demonstrate the superior performance of our algorithm

by showing the tracking performance, and also comparing the

estimation mean squared error (MSE) of the reconstructed

signal obtained using our algorithm, to those obtained using

the already existing nonlinear Bayesian framework for mod-

eling ECG signals using Gaussian functions [9], [10]. The

estimation MSE is calculated using the reconstructed signals

obtained from both models and averaged over a number of

Monte Carlo (MC) runs, as, MSE = 1

Nr

∑Nr

r=1
(Z1:N−Ẑ

r
1:N )2,

where Nr is the total number of MC runs (Nr = 500 is used

for all MSE simulations in this work), Z1:N represents the

samples of the reference ECG signal, with N being the total

number of data samples used, and Ẑ
r
1:N are the estimated

signal samples obtained using the model parameter estimates

for the rth MC run. The noise-free reference ECG signal is

formed by averaging noisy real ECG beats of similar type

obtained from the MIT-BIH arrhythmia database [16] and is

shown in Fig 2(a). The better tracking performance of our

algorithm can also be seen in Fig. 2(a) by comparing the plots

showing the original and reconstructed signals using estimates

from our SMCMC model and the Gaussian model of [9], [10]

for a typical MC run. It can be observed that the Gaussian

method does not track the data well and misses some of the

fiducial points, such as the curves of the Q and T waves, among

others, since it uses a phase-wrapping method to generate

initial filter estimates. However, our algorithm can easily track

the data by adaptively delineating it into windows and using

the appropriate polynomial model. The superior performance

of our algorithm in terms of estimation MSE can be seen in

Fig. 2(b), which shows that our algorithm has lower estimation

MSE when compared to the Gaussian ECG model.
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Fig. 2. (a) Original and reconstructed ECG data using SMCMC method
with simultaneous model selection (The asterisks in the plot indicate the
position in time at which a given window, during which model parameters
are assumed to be constant, has ended) and Gaussian ECG model [9], [10];
(b) Comparison of estimation MSE using SMCMC method with simultaneous
model selection and Gaussian ECG model [9], [10]. Note that the y-axis in
the plot is logarithmic.

The leverage offered by multiple models is further sub-

stantiated in Fig. 3(a), wherein it is seen that the flexibility

provided by the algorithm allows the best model to be selected

to represent the data depending on the original signal, and

provides better tracking results, compared to when a single

model (either a linear, quadratic or cubic polynomial) is used

without any model selection. For clarity, we only show the

samples from the P wave of the first N type beat using the

same ECG signal shown in Fig. 2(a). In addition, in Fig. 3(b),

it is seen that the estimation MSE is lower while using multiple

models when compared to the estimation MSE while using a

single model.

Finally, we use the Bayesian ML classifier to classify

between five different ECG signals as discussed in Section
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Fig. 3. (a) Original and reconstructed signal (shown only for the P wave
portion) using multiple models with model selection and individual models
with no model selection; (b) Comparison of estimation MSE using multiple
models with model selection and individual models with no model selection.
Inset shows a magnified version of plot between 0.7-1.3 seconds. Note that
the y-axis in the plot is logarithmic.

III-B. The classification results are shown in the form of a

confusion matrix in Table I, wherein, the rows and columns

in the table indicate the true and the estimated class of the

signals, respectively. The (u, v)th entry of the matrix gives

the percentage of signals in class Cu that are classified to

class Cv . The correct classification rates given by the diagonal

entries of the matrix show that our algorithm achieves a fairly

high classification rate, with an average correct classification

rate of 98.5%. We also compare our correct classification

rates with those presented in [6], [7] in Table II. In both

these works, each delineated QRS complex was fitted with

a Hermite polynomial and the feature vector consisting of

17 parameters was obtained. As seen from Table II, our

classification results compare favorably with those results even

with a fairly small feature set. In fact, our results for the correct

classification rates of the j type beats are considerably better

since our features include information about the P wave, which

is noticeably absent in these beats [15].

TABLE I
CLASSIFICATION CONFUSION MATRIX FOR FIVE ECG SIGNAL TYPES

Class N L R E j

N 97.9% 0 0 0 2.1%

L 0 99.5% 0 0.5% 0

R 0 0 97.9% 2.1% 0

E 1.8% 0 0 98.2% 0

j 1.2% 0 0 0 98.8%

TABLE II
COMPARISON OF CLASSIFICATION RESULTS

Class Classification Classification Classification
Type Rate [6] Rate [7] Rate (New)

N 98.1% 97.8% 97.9%

L 97.0% 96.6% 99.5%

R 94.0% 99.0% 97.9%

E 90.0% 96.0% 98.2%

j – 90.5% 98.8%

V. CONCLUSIONS

In this paper, we presented a novel method for ECG mod-

eling and parameter estimation using the SMCMC filter with

simultaneous model selection. We showed that our algorithm

can track different ECG morphologies and beat types without

requiring a priori information about the data. Our results also

demonstrated a superior estimation MSE performance when

compared to the Gaussian ECG model [9], [10] for tracking

ECG signals with abrupt changes in morphologies. In addition,

an average correction classification rate of 98.5% was obtained

for classifying five different types of ECG signals using the

model parameters.
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