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Abstract— This paper demonstrates the feasibility of decod-
ing neuronal population signals using a sparse linear regres-
sion model with an elastic net penalty. In offline analysis of
real electrocorticographic (ECoG) neural data the elastic net
achieved a timepoint decoding accuracy of 95% for classifying
hand grasps vs. rest, and 82% for moving a cursor in 1-D
space towards a target. These results were superior to those
obtained using `2-penalized and unpenalized linear regression,
and marginally better than `1-penalized regression. Elastic net
and the `1-penalty also produced sparse feature sets, but the
elastic net did not eliminate correlated features, which could
result in a more stable decoder for brain-computer interfaces.

Index Terms - elastic net, sparse linear regression, feature
selection, neural signals, brain-computer interfaces

I. INTRODUCTION

Brain-computer interfaces (BCIs) have progressed greatly
in recent years, and continue to move towards the goal of
offering neural control of assistive devices. This progress is
due in part to improvements in computing power, as well as
recording and processing methods, that allow increasingly
larger amounts of neural data to be processed and analyzed
in real time. This increase in data generally increases the
likelihood that useful signals will be present, but it also
causes an increase in the amount of irrelevant or noisy data.

In the case of a BCI the goal is typically to decode the
neural data to produce a control signal for an external device
such as a computer cursor, robotic arm, or wheelchair [1].
If not handled properly, extraneous or contaminated neural
features can translate into noise in the output. The objective
then should be to implement a neural decoding method that
is invariant to irrelevant features.

One strategy is to observe the modulation of the neural
signals and then choose appropriate parameters for the de-
coder [2]. Neural plasticity then typically allows the brain
to further adapt to the selection [3]. This strategy has even
been taken to the extreme in non-human primates, where it
was shown that the brain could eventually adapt to randomly
chosen features [4]. This strategy is time-consuming, though,
and requires operation by highly trained personnel.
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For BCIs to be usable by non-experts, the decoding algo-
rithm needs to be highly automated and robust. This paper
investigates the use of elastic net regularization for linear
regression in BCIs. The next section covers the background
of this technique, as well as a few related methods. The
elastic net is also compared to some of these other methods
through the decoding of offline electrocorticography (ECoG)
neural data and the results are discussed with their possible
implications towards online BCI decoding.

II. BACKGROUND

A. The Curse of Dimensionality

The task of training a classifier with a large number of
irrelevant features and a small number of observations is
not unique to BCIs. Overfitting and the contributions of
noisy features both become major concerns in these types
of problems. Dimensionality reduction, feature selection,
and regularization are methods often employed in high-
dimensional decoding problems. Dimensionality reduction
methods such as principal component analysis (PCA) and
linear discriminant analysis (LDA) have been used in BCIs
[5], but these techniques transform the features to a new
basis, making it more difficult to interpret the real-world
significance of the raw features. Feature selection retains the
original basis, but might not capture as much of the original
information as dimensionality reduction.

A number of BCI studies have used ’pure’ feature se-
lection methods such as forward stepwise regression that
only choose features and then solve for weights using a
standard method such as ordinary least squares (OLS).
Forward stepwise regression adds the feature at each step
that eliminates the most residual error (backward stepwise
removes features at each step that eliminate the least amount
of error). These techniques can be biased, since the best
set of M + 1 features does not necessarily contain the best
set of M features [6]. They can also be unstable, in that a
small change in the features could result in a large change
in the output. Stagewise regression attempts to minimize the
problems associated with stepwise regression by increasing
a feature’s weight by a small amount at each step rather than
all the way to the least squares solution. The adjusted feature
could remain the same for multiple steps.

B. Regularized Linear Regression

Linear regression, which has been used frequently in BCIs,
takes the form of the optimiztion problem given by (1). Y is
a vector containing N observations, X is an N ×M matrix
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containing M features for each observation, β is a vector of
M weights that map the features to the observations, and θ
is the bias, or offset, term. Although there are many methods
for computing β based on this model, the simplest is OLS.

β̂ = argmin
β
‖Y −Xβ + θ‖22 (1)

Regularization is a common way of addressing overfitting
and other problems with high-dimensional feature spaces.
This technique adds a penalty term, represented by c(β) in
(2). λ is a free parameter that determines the magnitude of
the penalty. In the case of `2 regularization the penalty is
the `2-norm of β, and in `1-regularization the penalty is the
`1-norm. The use of these penalties is sometimes referred to
as ridge regression and lasso (least absolute shrinkage and
selection operator), respectively. The lasso penalty is more
computationally challenging since it is non-differentiable,
but it also performs feature selection by reducing some
values of β to zero [7]. It has actually been shown that in
stagewise regression as the feature weight stepsize optimally
approaches zero, the result approaches the lasso [6].

β̂ = argmin
β

(‖Y −Xβ‖22 + λ ∗ c(β)) (2)

C. Elastic Net

The lasso has proven to be be highly effective in classi-
fication problems with a large number of irrelevant features
and has been used on neural data, however, it is not without
drawbacks. In a situation where multiple features are useful
but highly correlated, lasso tends to keep one and drop the
rest. Stability then becomes a concern, and robustness could
also be an issue in situations where not all features remain
reliable over time due to noise or other events.

Elastic net regression attempts to address these concerns
by blending the `1 and `2 penalties, as shown in (3). The
goal in elastic net is to produce a sparse feature space with
the `1 penalty, but improve stability and retain correlated
features with the `2 penalty. Like the lasso this is not a
computationally simple problem, but efficient methods for
solving it have been developed. There is also an additional
free parameter in α, which determines the relative strength of
the penalties. Previous studies have shown this technique to
be effective in classification of functional magnetic resonance
imaging (fMRI) data [8], [9].

β̂ = argmin
β

(‖Y −Xβ‖22 + λ(α‖β‖1 + (1− α)‖β‖2)) (3)

III. METHODS

A. Data

The datasets used in this study consisted of electrocortico-
graphic (ECoG) signals recorded from two subjects under-
going monitoring for intractable epilepsy. Informed consent
was obtained from both subjects prior to testing, and all data
collection and experimental procedures were approved by the
Institutional Review Board of the University of Pittsburgh.

The signals were sampled at 1200 Hz and bandpass
filtered from 0.1 to 200 Hz using g.USBamp amplifiers. The
data signals were acquired using BCI2000, an open-source
software package written in C++ [10], and were then sent to
Craniux, an open-source software package created in Lab-
VIEW that handled experimental parameters and execution
[11]. Spectral estimation was performed using the maximum
entropy method with 10 Hz frequency bins, 300 ms windows,
and a 33 ms step size. Subjects were observed to ensure eye
and facial movements were not used to control the BCI.

In choosing the data for offline analysis, it was attempted
to use experimental paradigms that have minimal online error
correction by the user. Paradigms with error correction, such
as a 2-dimensional cursor task in which the subject might
not move along the ideal path to the target, present problems
in offline analysis. It can become difficult to determine the
subject’s exact intent and to incorporate the neural adaptation
that is occurring as a result of error correction.

The experimental paradigm with Subject A was a simple
hand grasp screening task. The subject was presented with
a visual cue in the form of a gray box on a black screen,
and was instructed to continually open and close the hand
while the cue was present. The hand performing the grasps
was contralateral to grid placement.

For Subject B, the experimental paradigm was a 1-
dimensional center-out cursor task. A cursor would appear
on the screen along with a target to the right or the left of
the cursor. The subject was instructed to perform hand grasps
to move the cursor to the right, and to move their elbow to
send the cursor to the left. The cursor was constrained to
horizontal movement and the trial ended when the cursor
touched the target. In this way it is assured that the subject
was always attempting to move the cursor in the same direc-
tion for the duration of each trial. The hand and elbow used
for movement were again contralateral to grid placement.

Subject A had 64 recorded channels: 48 from a standard
clinical ECoG grid, and 16 from a high-density ECoG
research grid. Subject B had 128 recorded channels: 62 from
clinical grids, 32 from research grids, 2 EKG channels, and
32 open channels. The EKG and open channels were left in
the data because part of the goal was to show the feasibility
of an automated decoder with no supervision on channel
selection. Data from Subject A consisted of 5 sessions with
24 trials each. For Subject B, data contained 4 sessions with
42 to 90 trials each for a total of 234 trials.

B. Classification

Decoding of the neural signals was done in an offline
analysis using four different methods: elastic net, lasso,
ridge regression, and OLS. The solutions for the first three
methods were calculated using a modified version of glmnet,
a freely available software package developed at Stanford
University. Glmnet uses cyclical coordinate descent in a
pathwise fashion and has previously shown excellent results
and convergence speed [12], [13].

To determine the best value of λ for elastic net, lasso, and
ridge regression, 10-fold cross-validation was performed for
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each training of the classifier across 20 different values of
λ. A similar scheme was originally adopted to determine the
best value of α, but it was found that this method generally
caused the result to closely mirror the lasso solution. While
this solution may indeed be the best fit for a particular set of
training data, it fails to produce the robustness and stability
that were earlier discussed as motivations for using the elastic
net penalty. For this reason, α was set at 0.1 (α = 1 is
equivalent to lasso and α = 0 is ridge regression).

Decoding was done on each session using 10-fold cross-
validation. Mean and standard deviation were calculated
from the training set to normalize all features. In the training
set, the time-average of each feature over each trial was
used, but in the testing set the decoding was done on each
timepoint of spectral data as it would be in a real-time BCI.
Results were averaged across all timepoints for each subject.

The main metric calculated was the percent of timepoints
in which the decoder was correct. For Subject A this means
determining whether the subject was grasping or not, and for
Subject B this means determining if the cursor would move
in the correct direction. Since this metric only determines the
accuracy of the direction of movement and not magnitude,
the change in distance to target was also measured for
Subject B. For both subjects, timepoints that were within
500 ms of stimulus onset were ignored. This was to ensure
that the spectral estimation window consisted of neural data
produced after the subject had reacted to the stimulus.

IV. RESULTS AND DISCUSSION

Fig. 1 shows the percentage of timepoints that were
classified incorrectly for both subjects using each decoder.
Elastic net had a lower error than the other decoders across
all sessions for both subjects. The advantage over lasso in
the average error is small, although elastic net did appear
to be more dependable across sessions as indicated by the
maximum session error for both subjects. The range of error
across sessions was quite large for all decoders with Subject
B, but as expected the error and consistency for the simpler
task performed by Subject A was much better.

The better consistency of Subject A helped highlight the
significant improvement of elastic net and lasso over ridge
regression and OLS (p < 0.05 for all cases). It should also
be noted that for similar tasks results are often reported for
testing on time-averaged features for each trial rather than
individual timepoints, which generally results in lower errors.
For Subject B this method resulted in errors of 10%, 13%,
22%, and 20% (elastic net, lasso, ridge regression, OLS).

The results in Fig. 2 reinforce those given by Fig. 1.
Additionally, it shows that ridge regression produced a
control signal that, although not as accurate on average,
was much more stable than the other decoders in that it
never moved the cursor a great distance in either direction.
This could be desirable in operating physical devices such
as robotic arms where sudden jerks and unpredictability
could present a danger. The elastic net result demonstrates
this same property to some extent with a distribution that
has slightly lower variance than lasso and OLS, but with

Fig. 1. Percentage of timepoints classified incorrectly. The value shown
indicates the percentage across all timepoints in all sessions. The error bars
indicate the minimum and maximum percentage of timepoints classified
incorrectly for an individual session.

Fig. 2. Change in distance to target for 1D cursor control. The distances
were normalized by the original distance to the target, and then binned with
a bin width of 1. The values represent the count of timepoints in each bin.

a higher mean than ridge regression. A higher variance in
this distribution could be an indication of more noise being
factored into the decoding results.

The sparsity of the weights used by the decoders is also
important in their discussion. Fig. 3 shows the weights
calculated by each decoder when trained on one session of
data from Subject B. As expected OLS has no sparsity in its
results and ridge regression, while having many weights that
are close to zero, also does not give a sparse set of weights.
Some banding can even be seen in these weights near 120
Hz and 180 Hz, which is most likely the result of line noise
harmonics in the data. Lasso, on the other hand, produces
a set of weights in which only 35 of the 2,560 weights are
non-zero. For the elastic net decoder, 114 features had non-
zero weights. Elastic net and lasso also chose no features
from the 32 open channels at the end, although there were a
few small non-zero weights on one of the EKG channels. If
these decoders were truly used in an automated system, steps
would need to be taken to address the presence of artifacts in
the signals (such as eye movement) that could be modulated
by the user to control the BCI.

Many of the features eliminated by lasso but retained by
elastic net closely neighbor a non-zero lasso weight both
spatially and in frequency. For example, lasso used the 100-
110 Hz bin on channel 27. Elastic net used this feature
as well as the rest of the gamma band on channel 27
and channel 19, which was spatially adjacent. This extra
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Fig. 3. Decoding weights calculated from one session of data from Subject B. Note that the intensity scale is not the same for each decoder to help
ensure that the non-zero weights are properly highlighted in the sparse solutions.

reduncancy in the decoder could be useful in a BCI where
the features are subject to noise and are themselves adapting
due to neural plasticity. The extra stability in the feature set
would also be desired when re-training so that the decoding
weights aren’t as much of a moving target for the BCI user.
When trained on each session of Subject B data, not a single
feature was common across all sessions for lasso.

V. CONCLUSIONS

The results here have demonstrated the feasibility of sparse
linear regression using the elastic net penalty for BCIs. The
decoding accuracy of this method was significantly better
than ridge regression and OLS, but only slightly better than
lasso. The feature set the elastic net chose appeared to retain
more correlated features than the lasso, though, resulting in
a more stable set of feature weights across training sessions.

Some level of sparsity should be desired in nearly any
decoding problem with a high-dimensional feature set in
order to eliminate noisy and irrelevant features, but the
proper level of sparsity in a BCI remains an open problem.
Having fewer features may allow the BCI user to more easily
adapt to the decoding weights. Eliminating features that are
only moderately useful could allow those features to be used
to control an additional degree of freedom. As discussed
here, though, a feature space that is too sparse could result
in loss of robustness and stability. A further advantage of the
elastic net penalty is that the level of sparsity can be scaled
all the way from the lasso to the ridge regression solution.

This study has provided initial results to show the use-
fulness of the elastic net penalty in BCIs. To fully measure
its effectiveness, though, as well as to determine the proper
feature set sparsity for BCI decoding, further studies should
be done with online decoding of neural signals. This allows
the BCI user’s adaptation to become part of the equation.
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