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Abstract— We propose a method of sparsifying EEG signals
in the time domain for common spatial patterns (CSP) which
are often used for feature extraction in brain computer in-
terfaces (BCI). For accurate classification, it is important to
analyze the period of time when a BCI user performs a mental
task. We address this problem by optimizing the CSP cost
with a time sparsification that removes unnecessary samples
from the classification. We design a cost function that has CSP
spatial weights and time window as optimization parameters.
To find these parameters, we use alternating optimization. In
an experiment on classification of motor-imagery EEG signals,
the proposed method increased classification accuracy by 6%
averaged over five subjects.

I. INTRODUCTION

Brain computer interfaces (BCI) capture brain activity
associated with mental tasks and/or external stimuli and
convert them into a device command [1]. BCIs provide
a non-muscular communication and control channel to the
external world [1]–[3]. Noninvasive measurement devices
such as electroencephalogram (EEG), magnetoencephalo-
gram (MEG), and functional magnetic resonance imaging
(fMRI) are widely used to observe brain activity. Among
them, EEG is considered to be a practical measurement
method for use in engineering applications because of its
simplicity and low cost.

Motor imagery based BCI (MI-BCI) is a promising real-
ization of a BCI [2], [3]. One of its feature components is
called the mu rhythm, which disappears around the motor
cortex when the body moves. It is also known that the
brain area where the mu rhythm disappears depends on
the imaginary task: i.e., it changes in tasks going between
hand and foot movement imagery, etc. [2], [3]. Therefore,
by accurately extracting these changes from the measured
EEG signals in the presence of measurement noise and
spontaneous components related to other brain activities, we
can classify the EEG signal associated with the imagination
of different motor actions such as movement of the right
hand, left hand, or feet.

The common spatial patterns (CSP) method is a well-
known approach to extracting brain activity for an MI-
BCI [1], [4], [5]. CSP gives a spatial weight to each electrode
in a multichannel EEG measurement system. The weights
are determined from learning data in such a way that the
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variances of the signal extracted by making linear combi-
nation of the multichannel signals and the spatial weights
differ between two classes (e.g. left and right hand movement
imageries). Recently, variants of CSP using the subband
decomposition [6], [7], temporal/spectral filter combined
methods [8]–[11], and regularization [12], [13] have been
proposed to improve classification accuracy.

Generally, the learning data for CSP is measured by asking
a user to follow a cue and performing the movement imagery
task indicated by the cue. Therefore, CSP and its extensions
use a time window that extracts signals observed after the
cue. Since the user performs the task after the cue, the EEG
features corresponding to the task are observed later than the
cue. Therefore, the signals observed during the period when
the user does not perform the task should be removed from
the signal used for classification. This motivated us to add the
time sparsification of the EEG signal to the CSP algorithm
in order to remove unnecessary samples. In this paper, we
propose a method for designing a sparse time window to
be applied to the EEG signals in the learning and testing
processes of CSP. We call this method time-sparse CSP
(TSCSP). TSCSP sparsifies the signal in the time domain by
applying a sparse time window to a segmented signal with
a finite number of samples. The length and center of the
window are found by minimizing a cost function including
the spatial weights and the time window as optimization
parameters. This cost function is based on CSP. We solve
the optimization problem of the cost function by using
alternating optimization, and we obtain the optimal spatial
weights by using the selected time window.

TSCSP is demonstrated in classification experiments. The
experimental results suggest that the use of a sparse time
window designed by TSCSP can improve the classification
performance of the MI-BCI.

It should be emphasized that the sparse time window can
be incorporated with any of the previously proposed CSP
variants [6]–[13] to increase the classification performance
of BCIs.

II. COMMON SPATIAL PATTERNS

CSP is an effective supervised feature extraction method
for a two-class MI-BCI. Let us review the basic CSP
method [4], [5].

Let X ∈ RM×N be a signal observed in a multichannel
measurement system, where M is the number of the channels
and N is the number of samples. CSP finds a spatial weight
vector, w ∈ RM , in such a way that the variance of a signal
extracted by the linear combination, wT X , is minimized in
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a class [4], [5]. The time variance of the extracted signal of
X is given by

σ2(X,w) =
1
N

N∑
n=1

∣∣wT (xn − µ)
∣∣2 , (1)

where xn is the nth row of X , the time average of the
observed signal is given by µ = (1/N)

∑N
n=1 xn, and ·T

denotes the transpose of a vector or a matrix.
Assume that we have sets of learning data, C1 and C2. Cd

contains the signals belonging to class d, d ∈ {1, 2} is a class
label, and C1∩C2 = ∅. CSP finds w in (1) that minimizes the
intra-class variance in Cc under the normalization of samples,
where c is a class label. More specifically, for c fixed, CSP
finds wc by solving the following optimization problem [4],
[5];

min
w

EX∈Cc [σ
2(X,w)]

subject to
∑

d=1,2

EX∈Cd
[σ2(X,w)] = 1, (2)

where EX∈Cd
[·] denotes the expectation over Cd. The prob-

lem (2) can be rewritten as

min
w

wT Σcw, subject to wT (Σ1 + Σ2)w = 1, (3)

where Σd, d = 1, 2, are defined as

Σd = EX∈Cd

[
1
N

N∑
n=1

(xn − µ)(xn − µ)T

]
. (4)

The solution of (3) is a generalized eigenvector correspond-
ing to the smallest generalized eigenvalue of the generalized
eigenvalue problem:

Σcw = λ(Σ1 + Σ2)w. (5)

Although the solution of (3) corresponds to the smallest
eigenvalue in (5), using several eigenvectors as the spatial
weights raise the classification accuracy [14]. ŵ1, . . . , ŵM

are the M generalized eigenvectors obtained by solving
(5), where ŵi corresponds to the ith smallest eigenvalue.
We assume that the 2r eigenvectors are used as the spatial
weights for classification of unlabeled data, X . We obtain
the feature vector, y ∈ R2r, from X defined as

y =[σ2(X, ŵ1), . . . , σ2(X, ŵr),

σ2(X, ŵM−r+1), . . . , σ2(X, ŵM )]T . (6)

III. TIME-SPARSE COMMON SPATIAL PATTERNS
(TSCSP)

We propose a method for finding a sparse time window
to remove unnecessary samples. Instead of (1), TSCSP uses

σ2
TW(X,w, b) =

1
‖b‖

N∑
n=1

bn|wT (xn − µ)|2, (7)

as a feature vector, where, b is a binary vector working as
a sparse time window defined as b = [b1, . . . , bN ]T , bi ∈
{0, 1}, i = 1, . . . , N , and ‖ · ‖ is the Euclidean norm of a
vector. ‖b‖ represents the length of the time window because

bi takes 0 or 1. The main problem of TSCSP is to decide
the spatial weights, w, and the time window, b.

In order to find these parameters, we design the following
optimization problem

min
w,b

f(b)J(w, b), subject to b ∈ {b̂1, . . . , b̂L}, (8)

where

J(w, b) =
EX∈Cc [σ

2
TW(X,w, b)]∑

d=1,2 EX∈Cd
[σ2

TW(X,w, b)]
, (9)

f(b) is a function of b, and c is a class label chosen from
1 and 2. Regarding the sparse time window, b, we choose
b out of candidates representing {b̂1, . . . , b̂L}, where L is
the number of the candidates for b and [b̂i]j ∈ {0, 1}.
f(b) is defined in such a way that it is always positive and
monotonically decreases with respect to ‖b‖.

We prevent overfitting of the spatial weights by combining
the f(b) in the cost function of (8). In general, if the signal
length is short, it leads to overfitting and poor classification
ability of the optimized parameters [15]. When the ‖b‖ is
small (meaning that the time widow is short), f(b) weights
J(w, b) with a large coefficient. Then the short time window
is not easily chosen by f(b) in (8). Therefore, by adding f(b)
to the problem, we can design the parameters taking account
of the signal length and prevent overfitting. We can use any
function satisfying the terms as f(b).

Because the number of the candidates for b is limited,
we can search the optimal parameters of (8) by solving L
generalized eigenvalue problems. However, it needs a large
computation cost if L is large. Therefore, to optimize w
and b, we propose the following alternating optimization
procedure based on alternating least squares. The procedure
separates the optimization problem into two subproblems:
one for finding w and the other for finding b. The subprob-
lems are alternately solved and the parameters are updated.

The first subproblem is to optimize w while fixing b.
Define

Rd = EX∈Cd

[
1
‖b‖

N∑
n=1

bn(xn − µ)(xn − µ)T

]
. (10)

for d = 1, 2. Then (8) can be written as

min
w

J(w|b) =
wT Rc(b)w

wT (R1(b) + R2(b))w
. (11)

The solution of (11) is given by the generalized eigenvector
corresponding to the largest generalized eigenvalue of the
generalized eigenvalue problem:

Rc(b)w = λ(R1(b) + R2(b))w. (12)

The second subproblem is to choose the sparse time win-
dow from the candidates. Define the N -dimensional vector,

z =
[
|wT (x1 − µ)|2, . . . , |wT (xN − µ)|2

]T
. (13)
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TABLE I
CLASSIFICATION ACCURACY [%] GIVEN BY 5×5 CV. THE FIGURES IN THE ROUND BRACKETS BESIDE THE ACCURACIES REPRESENT THE STANDARD

DEVIATION OF ACCURACY IN CV AND THE NUMBER OF DIMENSIONS OF THE FEATURE VECTOR.

Subject
Method aa al av aw ay Ave.

CSP 78.57 (±5.97, 2) 94.79 (±2.72, 8) 67.36 (±6.09, 7) 95.43 (1.86, 6) 88.93 (±4.46, 3) 85.21 (±4.22)
TSCSP1 (q = 0.01) 81.93 (±5.03, 4) 96.93 (±2.45, 8) 72.57 (±3.64, 2) 95.93 (2.39, 3) 92.86 (±3.96, 4) 88.04 (±3.49)
TSCSP1 (q = 0.1) 81.71 (±4.70, 5) 96.79 (±2.47, 7) 72.36 (±2.47, 2) 95.93 (2.28, 10) 92.71 (±3.34, 7) 87.90 (±3.24)
TSCSP1 (q = 1) 80.93 (±4.08, 6) 96.79 (±2.47, 7) 72.64 (±4.88, 3) 95.71 (4.88, 3) 93.07 (±3.87, 6) 87.83 (±3.47)

TSCSP1 (q = 10) 80.50 (±5.31, 8) 96.71 (±2.51, 7) 71.36 (±3.73, 2) 95.43 (2.58, 3) 93.21 (±4.31, 6) 87.44 (±3.69)
TSCSP1 (q = 100) 78.93 (±6.46, 3) 96.86 (±2.54, 7) 71.57 (±4.15, 2) 95.36 (2.42, 5) 93.36 (±3.94, 6) 87.21 (±3.90)
TSCSP2 (q = 0.01) 84.29 (±3.65, 5) 98.86 (±1.62, 10) 78.71 (±4.64, 3) 96.43 (2.13, 5) 96.07 (±3.22, 4) 90.87 (±3.05)
TSCSP2 (q = 0.1) 85.43 (±3.60, 4) 98.71 (±1.59, 10) 79.21 (±4.43, 5) 96.64 (2.69, 2) 96.93 (±2.39, 8) 91.39 (±2.94)
TSCSP2 (q = 1) 85.93 (±4.23, 2) 98.71 (±1.59, 10) 78.36 (±4.13, 2) 96.57 (2.24, 6) 96.71 (±1.98, 1) 91.26 (±2.83)

TSCSP2 (q = 10) 84.64 (±4.58, 1) 98.71 (±1.67, 9) 77.07 (±5.64, 2) 96.29 (2.41, 2) 97.00 (±1.84, 6) 90.74 (±3.23)
TSCSP2 (q = 100) 81.07 (±6.88, 1) 98.50 (±1.76, 9) 73.86 (±6.70, 5) 96.29 (2.18, 2) 96.93 (±2.03, 6) 89.33 (±3.91)

Its expectation over Cd is defined as sd = Ez∈Cd
[z] for

d = 1, 2. Accordingly, (8) can be written as

min
b

f(b)J(b|w) = f(b)
bT sc

bT (s1 + s2)
,

subject to b ∈ {b̂1, . . . , b̂L}.
(14)

Since f(b)J(b|w) is calculated by performing 2N times
multiplications after obtaining sd and f(b̂i) can be calculated
in advance, calculating f(b)J(b|w) does not cost much.
Therefore, we calculate f(b)J(b|w) by using all of the can-
didates and select the time window that gives the minimum
value of f(b)J(b|w) as the optimal window.

We alternately optimize w and b by solving optimization
problems (11) and (14). We initialize b as a vector of which
all elements are one, and we update w first in the alternating
optimization.

The feature vector extracted with the sparse time window
is defined as follows. By solving (12) with b, we obtain M
spatial patterns as ŵi for i = 1, . . . ,M where ŵi is the
eigenvector corresponding to the ith smallest eigenvalue of
(12). As suggested in [8], we use the 2r eigenvectors to form
a feature vector. Accordingly, the feature vector, y ∈ R2r, is
defined as

y =[σ2
TW(X, ŵ1, b), . . . , σ2

TW(X, ŵr, b),

σ2
TW(X, ŵM−r+1, b), . . . , σ2

TW(X, ŵM , b)]T .
(15)

The TSCSP procedure is summarized in Algorithm 1 as a
pseudo-code.

IV. EXPERIMENT

We compare the performances of TSCSP and CSP in
classifying EEG signals during motor imagery tasks.

A. Data Description

We used dataset IVa from BCI competition III [16]
(see http://www.bbci.de/competition/iii/ for the
details about the dataset). This dataset consists of EEG
signals during right hand and right foot motor-imageries.
The EEG signals were recorded from five subjects labeled
aa, al, av, aw, and ay. 118 EEG channels were measured
at positions of the extended international 10/20 system.
The measured signal was bandpass filtered with a passband

Algorithm 1 Time-sparse CSP
Input: C1, C2: the sets of learning data of X ∈ RM×N .
Parameter: f : the function by the length of the time
window, {b̂1, . . . , b̂L}: the candidates for b.
Output: ŵi; spatial weights (i = 1, . . . ,M ), b: the time
windows.

Initialize b.
Set the index of iteration as k = 0.
repeat

k ← k + 1
Update w by solving (11).
Update b by solving (14).
Calculate cost, Ck from the cost, f(b)J(w, b).

until Ck − Ck−1 is sufficiently small.
Obtain M spatial weights, ŵ1, . . . , ŵM , by (12).

of 0.05–200 Hz and digitized at 1000 Hz. During each
experiment, visual cues told the subject which imagery task
(left hand, right hand, or right foot) should be performed.
The cue was indicated for 3.5 seconds and the subject
performed the motor imagery for this period. The resting
interval between two trials was randomized to be from 1.75–
2.25 seconds. Only EEG trials for the right hand and right
foot were provided.

We furthermore applied a Butterworth lowpass filter whose
cutoff frequency was 50 Hz and the filter order was 4 to this
data. After that, the data was downsampled to 100 Hz. The
dataset for each subject consisted of signals of 140 trials per
class. The signal in each trial was extracted from the period
of 0.5 to 3.5 seconds after a visual cue. Therefore, the length
of the signal in each trial amounted to 3.0 seconds.

B. Result

Table I shows the classification accuracy given by CSP
and TSCSP with different parameters. The classification
accuracies in Table I are from 5 × 5 cross validation (CV).
Before classification, a bandpass filter between 7–30 Hz
was applied to the signals as preprocessing. In TSCSP, we
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Fig. 1. Selected sparse time window for each q in subject aa.

prepared the candidates for b in such a way that

b̂l = [0, . . . , 0︸ ︷︷ ︸
Dl

1, . . . , 1︸ ︷︷ ︸
Wl

0, . . . , 0]T , l = 1, . . . , L, (16)

where Dl and Wl represent the delay and length of the
time window, respectively, and they were chosen out of
{0, 10, . . . , 350} satisfying Dl + Wl ≤ 350 and Wl > 1.
Thus, the number of candidates, L, was 627. Next, we used
the function,

f(b) =
1

ln(q‖b‖+ 1)
, (17)

as f(b) in (8), where q is a parameter that affects the
length of the time window and q should be a positive value.
In Table I, TSCSP1 is a result of not using the optimal
time window for test signals. TSCSP2 is a result of using
the optimal time window for test signals. The number of
spatial weights representing r was tuned for each method and
subject is also shown in Table I. The extracted feature vector
was classified by using a support vector machine (SVM) [17]
with a radial basis function (RBF) kernel. The SVM was
implemented with SVM-Light [18]. The best classification
performance was achieved by TSCSP2 (q = 0.1).

Examples of the sparse time windows selected by TSCSP
are shown in Fig. 1. We can see that the selected time window
becomes shorter as q becomes larger.

V. CONCLUSIONS

We described a method that selects a sparse time window
for observed signals to remove unnecessary time periods
from observations. On the basis of CSP, we designed the
cost function with the sparse time-windowed signals. To find
the spatial weights and the sparse time window satisfying the
criterion, we used alternating optimization. In the experiment
of classification for motor-imagery EEG signals, we showed
the effectiveness for classification of the TSCSP. In future
work, because TSCSP needs design and tuning for f(b), we
will develop a method for easily finding a suitable f(b).
The idea of time sparsification can be applied to the method
based on CSP [6]–[11], and TSCSP can help to improve BCI
classification performance and brain signal analysis.
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