
  

Abstract—In this paper a novel Lung Sound Automatic 

Verification (LSAV) system and front-end Quantile based 

acoustic models to classify Lung Sounds (LS) are proposed. The 

utilization of Quantiles allowed an easier and objective 

assessment with smaller computational demand. Moreover, 

less-complex Gaussian Mixture Models (GMM) were computed 

than those previously reported. The LSAV system allowed us to 

reach practically negligible error in healthy (normal) LS 

verification. LASV system efficiency and the optimal GMM’s 

were evaluated by using Equal Error Rate (EER) and Bayesian 

Information Criterion (BIC) techniques respectively. These 

approaches could provide a tool for broader medical evaluation 

which does not rely, as it is often the case, on a qualitative and 

subjective description of LS. 
Keywords: Quantile Vectors, Lung Sounds, Automatic 

Verification, Gaussian Mixture Models (GMM). 

I. INTRODUCTION 

Utilizing the signals generated by the human body, 
different applications can be implemented, such as detection 
of diseases or identification of individuals at risk as a part of 
screening [1]. In both cases there are two crucial stages: The 
first is the feature extraction and data representation to 
emphasize attributes allowing identification [2-4]; the second 
stage is intended to generate models of the class the data 
belongs to.  

The capacity to classify normal or adventitious lung 
sounds (LS) strengthens the objective aspects of medical 
diagnoses; in this domain, digital tools can be very accurate 
and reliable for the LS classification [1, 3]. Our studies were 
motivated by an increasing number of cases of asthma in 
children and limited diagnostic capabilities to screen the 
condition [3-5]. In previous works [3, 4], normal LS 
recognition was the main concern, while in this paper normal 
LS classification became the main focus, which led to the 
development of the LSAV system, and significantly better 
results were obtained. 

In this paper, the term “verification” is used instead of 
“recognition”, due the LSAV system goal is not the explicit 
identification of a particular pathology pattern, but instead it 
is designed to verify if a lung sound exhibits, or not, a normal 
healthy acoustic behavior. 

An essential aspect of our studies was to first determine if 
LS are normal or adventitious to eventually identify what 
type of pathology the patient presents. Since certain diseases 
cause characteristic adventitious sounds, the idea is to acquire 
acoustic signals through a digital stethoscope and to 
preprocess them based on spectral density. The main 
motivation is to exploit the development in speech research 
and respiratory diseases medical care [6-8]. Studies have 
demonstrated that airflow measurements could reflect 
morphological changes in the airways of asthma patients by 

using Quartiles [9, 10].  Adapting these experiments to LS 
verification, physiology alterations would influence airflow 
and its spectral representations [3]; therefore, it will be an 
important criterion for classifying normal or adventitious 
sounds related pathologies. 

II. ACOUSTIC VECTORS 

The front-end signal processing in this case involves 
representation of the acoustic parameters of corresponding 
vectors. In this context, it is necessary to determine the 
stationary range in LS for inspiratory and expiratory portions 
of respiratory cycle durations. The Parameter extraction is the 
process of measuring particular attributes of the signal to 
distinguish between normal and pathological signals [3, 4]. 
The LS signal analysis (Fig. 1) and their spectrogram (Fig. 2) 
are performed on a succession of theoretically stationary 
segments called analysis windows or frames, which may be 
of 400 ms, overlapped each 100 ms. 

 

Figure 1.  LS signal (Time vs. Amplitude). 

 

Figure 2.  Normal (healthy) LS spectrogram. 

Although there are different approaches for acoustic 
signal representation such as the MFCC (Mel Frequency 
Cesptral Coefficients) vectors, which are an extension of the 
cepstral methods, and its transformation to a nonlinear 
frequency space is related to the human hearing [3, 4, 6-8]. In 
this paper we propose Quantile vectors for LS verification, 
discussed in details in the next section. 

III. QUANTILE PRINCIPLES FOR LS: OCTILES 

The Quantiles are points taken at regular intervals of the 
cumulative distribution function (CDF) of a random variable. 
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The data is sorted and divided into segments of equal width, 
to form the empirical distribution function [2]. 

Complying with a basic principle for a probability 
distribution, the spectral distribution is normalized (Eq. 1). 
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This guarantees that the distribution of the frequency 
components obtained from the FFT will define an area that 
equals 1. Thereafter, the values for which the Octiles divide 
the distribution at f.125,…,f.875 are calculated using Eq. 2. 

      ∫   ( )   
     

  
          ∫   ( )   

     

  
  (2) 

It is important to note that calculating the last Quantile is 
not relevant, because in a normalized process it is always 1 
(Fig. 3, Table I). 

 

Figure 3.  First 400 ms of the Normal LS (Frequency vs. Amplitude). 

TABLE I –OCTILE COEFFICIENTS AND RESPECTIVE FREQUENCIES 

FROM FIG. 3 

Frame No. 
Octile Coefficient (Q.#) 

125 250 375 500 625 750 875 

Freq. (Hz) 16  21  30  43  52  63  125  

IV. RALE AND ITM DATABASES 

RALE is a signal repository developed at the University 
of Manitoba, Winnipeg, Canada [3, 4]. It contains a set of 
Lung Sounds that were recorded in groups of individuals who 
had normal breathing, and others with crackles, wheezes, and 
other peculiar sounds. RALE contains over 50 labeled *.wav 
signals (recordings), and 24 additional unlabeled signals, 
which allow system tests and learning evaluation. The signals 
are filtered with a 7.5 Hz high-pass Butterworth filter to 
suppress any DC offset. Moreover, a low-pass 8th-order 
Butterworth filter set at 2.5 kHz was used to avoid aliasing. 
RALE signals sampling rate is 11025 Hz. 

In order to implement a Normal LS model, numerous LS 
recordings were taken from ITM subjects (students from 
Instituto Tecnológico de Mexicali). The group‟s age ranged 
from 18 to 25 years-old. They were assessed by applying 
Stethographics‟ Interactive Software (STG) to distinguish 
those with normal breathing from those with normal 
breathing from those with adventitious sounds. The LS were 
considered Normal if the subject‟s breathing didn‟t exceed a 
STG‟s criteria threshold. The ITM recordings were made 
following a developed protocol with a sample rate of 11025 
Hz. 

It is known that the heart sounds overlap with LS at low 
frequencies. Regarding this issue, several pre-processing 
methods (and their combinations) were made: Sound Activity 
Detection (SAD), high-pass Butterworth filter for heart, pre-
emphasis, etc. Despite all combinations, the database did not 
reflected significant recognition improvements. Actually, the 
results were worse because the LS information which is 
overlapped at heart frequencies was also altered in the 
process. LSAV system executions were done with unaltered 
ITM recordings (except for DC mean subtraction), while 
RALE signals were used as provided. 

The adventitious LS signals were taken from RALE 
database and presented the following cases: 5 asthma, 4 
crackles, 4 stridor, 7 wheezes, and 8 normal. Aside from 
RALE, the database was extended by adding 28 cases from 
ITM recordings of Normal LS, which corresponded to 7 
individuals (4 recordings each), thus expanding the corpus to 
36 cases of normal LS. 

V. GMM MODELING 

A Gaussian Mixture Model (GMM) is characterized by 
its means, covariance(s) and weights; each class was 
represented by a GMM model λ. A Gaussian mixture density 
is a weighted sum of M component densities, as depicted by 
the Eq. 3: 
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 is a D-dimensional random vector ( x
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) i=1,..,M are the component densities, 
and mi , i=1,...,M, are the mixture weights. Each component 
density is a D-variate Gaussian function as shown in Eq. 4. 
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Here,   ⃗⃗  ⃗ is the mean vector and ∑   is the covariance matrix. 
During the training stage the models for each class (normal 
and adventitious sounds) were computed by using the 
correspondent recordings, thus creating a codebook. A signal 
of the same class must be recorded from as many patients as 
possible to be representative. After the LS signals were 
recorded, each class was represented as a set of Quantile 
Vectors. The GMM method uses the EM (Expectation 
Maximization) algorithm to build the models    
*      ⃗⃗  ⃗ ∑   +; this computation was made for each class, i.e. 
creating their classes. In each model, the mean   ⃗⃗  ⃗ represents 
the average of all vectors, while the covariance matrix 
∑   describes the variability of the acoustic class [3, 4]. 

Gaussian Mixture Models are obtained from 
multidimensional density histograms (which have been 
normalized), built from the acoustic vectors. So, instead of 
examining the distribution of the data, Gaussian mixture 
curves are adjusted to the multidimensional histograms. 

VI. LSAV SYSTEM 

The efficiency of the LS automatic verification (LSAV) 
system depends on the available quantity of signals and 
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training data. In this kind of system there are two error types: 
False Acceptance (FA), when the system classifies an 
adventitious signal as Normal LS; and False Rejection (FR) 
when a Normal signal is misclassified as Adventitious. 
System efficiency is measured by using both error types as 
rates (Eq. 5 & 6). 

    
             

                                  
   (5) 
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System efficiency is expressed in terms of the Equal Error 
rate (ERR), which is an interpolated point value in which 
FAR equals FRR. Determining this value is critical for 
optimal system performance. If the threshold is too high, 
FRR will rise (Normal LS may be considered Adventitious 
and rejected); similarly, if the threshold is too low, FAR will 
increase (Adventitious LS are wrongly accepted). With the 
purpose of selecting a proper Decision Threshold (∆i), the 
system is adjusted over a validation data set. Efficiency could 
also be expressed with ROC curves [2]. 

In order to partition the database, we started with an 
Automatic Speaker Verification defined procedure, named 
Lausanne protocol [11], where the Normal LS serves as the 
Client, while the Adventitious serves as the Imposter. The 
Normal and Adventitious models are computed from a 
Training Data set, and the decision threshold is obtained by 
using an Evaluation set [12]. 

The score is the log10 of the rate between the Normal LS 
probability and the Adventitious probability for each 
evaluated LS input signal; when the Normal LS probability is 
higher than the Adventitious probability, the result then 
becomes positive, on the contrary, if the result is lower than 
the Adventitious probability, the result is negative (Fig. 4, 
Fig. 5). 

In order to run the decision process (Fig. 4), the 
recognition was computed by using a measurement of model 
similarity. The RALE+ITM database was divided in two sets: 
Normal and Adventitious. 18 recordings from the Normal 
partition were used to build the Normal LS model: 9 for 
evaluation and 9 for testing. From the Adventitious partition, 
7 signals were used for Evaluation and 13 for Testing. The 
Lausanne protocol was the criterion to select Evaluation and 
Test populations (partitions). 

 

Figure 4.  General depiction of the LSAV system workflow. 

VII. RESULTS AND DISCUSSION 

Quantile Vectors (in short-time) were computed from the 
FFT (Fig. 3). The short-time computation was performed on 
frames of 400 ms for each signal, as shown in Table I and 
Fig. 3. As mentioned, the FFT is calculated for each frame, 
thus obtaining its Quantile Vector. This process is repeated 
frame by frame over the entire signal, resulting in an Nx7 

matrix, where N is the number of obtained vectors along the 
signal. 

In Table I, the Octile Vector 1 (No actv.) corresponds to 
the first analysis frame, which contains neither expiration nor 
inspiration activity. The 10th frame Vector (actv.) 
corresponds to a segment of breathing activity. Since the 
frequency amplitudes are higher, the Quantile coefficients 
will present higher values. This key aspect reflects the 
potential of Quantile Vectors, because their frequency 
attributes evidence acoustic activity by relating energy and 
power spectral density. 

Regarding Normal LS, the experiments performed with a 
single Gaussian density model achieved excellent results. It 
can be noted that a single Gaussian density curve could 
suffice for Normal LS modeling, given that its Quantile 
distribution adjusts well to a normal PDF, contrary to the 
Adventitious LS. It is important to achieve a good 
classification in normal LS signals, because it could allow 
determining the possible existence of pathologies. In fact, in 
previous works [3, 4], this was the principal classification 
drawback. From the experiments, it was observed that a good 
selection of database partitions (or cohort) for the 
Adventitious model improves the results. Given that there 
was a limited quantity of adventitious signals, it was 
necessary to build the Adventitious model by using both 
Adventitious partitions (Test and Evaluation). The results 
were excellent: the LSAV system achieved a 0% EER along 
an interval obtained in the Evaluation stage (Fig. 5). The 
results confirm that the system could greatly improve 
objective auscultatory diagnosis. 

On the other hand, Quantile Vectors show their capacity 
to capture the Normal LS characteristics. If the system 
classifies an individual‟s breathing as Adventitious, it could 
be possible to proceed with a system oriented to pathology 
detection, such as the one discussed in the literature [3, 4]. 

 

Figure 5.  FAR and FRR Curves (i.e. EER). 

One way to evaluate the model size is by applying either 
the Bayesian or the Akaike Information Criterions (BIC, 
AIC). The model with the optimal BIC value is chosen as the 
„best‟ model [13]. The BIC allows estimating how a model 
adjusts to the data, regarding the number of components, 
parameter estimates, and a form of the covariance matrices 
[13]. In order to just visualize this criterion for our Validation 
system, 50 separate models were built for both Normal and 
Adventitious LS, and their AIC and BIC values were 
computed (Fig. 6) with the aim of selecting the best model. 
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Figure 6.  BIC Criterion results for each Model size, for both Normal 
model (left) and Adventitious model (right). 

In Fig. 6 the horizontal axes represent the number of 
Gaussian Densities used in the Models, while the vertical 
axes show their AIC and BIC values. Even though AIC and 
BIC values decreased as the number of densities increased, 
neither FAR nor FRR curves exhibited evident behavior 
improvements; ERR remained 0%. Also, lower AIC and BIC 
values are observed in normal LS than those in adventitious 
signals for the same densities number by using Quantiles. At 
the moment, the experiments oriented to model selection 
based on the AIC and BIC methodologies are not conclusive. 

VIII. CONCLUSION 

In this paper we showed a novel approach in Lung 
Sounds signal representation, based on the Quantile Vectors, 
which were obtained through FFT analysis, from signal 
frames of 400 ms each, and overlapping by 100 ms. 

In previous works [3, 4], good results were obtained in 
Adventitious LS detection, but not the same with Normal LS. 
Therefore, we carried out the presented verification 
experiments. As the results show, the Octile Vectors were 
successful for LS verification, and achieved 0% EER. Our 
analysis of Acoustic LS was done by applying successful 
technologies from voice processing that highlight their 
potential. The application of Quantile Vectors was a follow 
up of overall studies of breathing mechanism including 
airflow, volume, and their relationship [9]. The Quantile 
Vectors showed to be more efficient than MFCC vectors in 
the case of Normal LS extraction features [3, 4]. Moreover, 
they led to simpler models, compared to those built from 
MFCC in the case of Normal LS. In fact, the models 
computed in our experiments were created with a single 
Gaussian density and 7-dimensional vectors. 

Although the results are highly encouraging, it would be 
useful to validate the experiments with a higher quantity of 
LS signals, and also to focus on patient groups organized by 
age, gender, and body weight. Additionally, it would be 
useful to include studies of infants and overall asthma 
evaluation using these techniques. Similarly, it would be 
useful to implement a verification system for specific types 
of adventitious sounds. This system could include channel 
normalization techniques, such as CMN (Cepstral Mean 
Normalization), CMS (Cepstral Mean Substraction), Sound 
Activity Detection (similar to Voice Activity Detection, or 

VAD), and experiments regarding model selection. In 
addition, we will adopt another ad-hoc results representation 
such as ROC curves, or Sensitivity/Specificity measurement. 
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