
  

 

Abstract – The presence of an excessive amount of water in 

lung is a sign of pulmonary edema which can be caused by heart 

failure. The current solutions for lung water detection involve 

the use of X-ray, CT scan or serum biomarkers, which require 

bulky and expensive instruments as well as long measurement 

duration. This paper reports on a study conducted on the use of 

a different sensing modality to detect the presence of water in 

lung. The main contributions of the paper are twofold: 1) we 

propose to employ acoustic (or sound) based techniques for lung 

water detection. The design is simple and can be implemented 

on a portable or wearable system; 2) we establish the feasibility 

of sound-based techniques for lung water detection, by carrying 

out experimental studies using four feature extraction methods 

combined with two classification methods. The findings of this 

study will be beneficial to the design of portable devices for 

rapid and accurate lung water detection. 

I. INTRODUCTION 

Pulmonary edema can be caused by many critical 
conditions, such as acute lung injury and heart failure which 
are either cardiogenic or non-cardiogenic. A common sign of 
pulmonary edema is the increased extravascular lung water 
that is usually accompanied by a high mortality rate. 
Consequently, reliable tools for monitoring and detecting lung 
water are increasingly needed in modern intensive care and 
clinic therapy. Existing lung water detection techniques can be 
classified into two types: Biochemical techniques and 
Engineering techniques. Examples of the former techniques 
include double indicator dilution method, single-indicator 
transpulmonary thermodilution method, blood gases method, 
re-breathing method, serum biomarkers, etc. [1]; while some 
examples of the latter techniques are X-ray, CT scan, 
microwave or ultrasonography, magnetic resonance imaging, 
Impulse Radio Ultra Wide band (IRUWB) radar, etc. [2,3]. 
The common drawbacks of the abovementioned techniques 
include the use of bulky equipments (i.e. not portable) and a 
relatively long measurement duration (i.e. cannot be measured 
readily). This is undesirable for some time-critical operations. 
Some of the equipments are expensive and their operations 
require trained professionals. These make them not practical 
for use outside the hospital (e.g. ambulatory applications).  
Another more practical and commonly used approach is 
auscultation where a stethoscope is used (by the clinician) to 
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listen to the lung sound. The drawback of this approach is that, 
the outcome is not quantifiable and the accuracy depends 
highly on the experience of the clinician using it.  

Lung or breath sounds are produced during the process of 
breathing due to the flow of air through abruptly branching 
respiratory passage. Analysis of lung sounds has been used to 
detect the presence of some respiratory disorders symptoms 
such as snoring, wheezing, etc. [4,5]. However, there are no 
(or very few) works reported on the use of lung sound to detect 
water in lung. The closest work is the paper published by 
Mulligan et al. in [6]. In [6], a system consisting of a speaker 
(that injects white Gaussian noise into the mouth) and four 
electronic stethoscopes (that record sound signals from the 
chest wall) was used to measure changes in the distribution of 
lung fluid in the respiratory system.  

This study proposes to detect lung water based on 
respiratory sounds collected via a stethoscope and tries to 
establish the feasibility of using lung sounds for detecting 
water in lungs. The sound-based approach proposed by this 
study has the advantage of being able to overcome the 
drawbacks of existing techniques as described above. Such an 
advantage is particularly important for time-critical situation 
when the clinicians need to have the information quickly 
during episodes of acute breathlessness.  

II. MATERIALS AND METHODOLOGIES 

A. Overview of the Lung Water Detection System 

The main purpose of this study is the establishment of the 
feasibility of detecting water in lung using a sound sensor. The 
process involved in our proposed method is shown in Figure 1.  

In Figure 1, there are six functional blocks namely data 
collection, data pre-processing, feature extraction, feature 
selection, classification and performance evaluation. The 
designs of these blocks are elaborated below. 

Data 
Collection

Data 
Preprocessing 

Feature 
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Feature 
Selection

Classification
Performance 

Evaluation

Sensor

Fig. 1. The process involved in our proposed lung water detection method 

B. Data Collection and Pre-processing 

Real data of 12 volunteers (including 6 patients and 6 
normal persons) were collected in practical environment (i.e. 
either in the ward of a local hospital or a research lab in the 
university). The data collection was conducted with approval 
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from the Institutional Review Board (IRB) and the informed 
consent of the patients.  

All the volunteers were selected by experienced clinicians 
working in this project.  

Respiratory sounds were first recorded from the back of the 
test subject using an electronic stethoscope which is connected 
to a laptop computer. The A/D conversion is performed by the 
computer and the recorded data are time-tagged. There was no 
direct contact between the stethoscope and the volunteers’ 
skin as the stethoscope was placed over the clothing worn by 
the volunteers. The sampling rate is 8000 Hz which is 
sufficient to capture the bulk of the energy of the lung sounds. 
The recording durations are around 40 seconds for the patients 
and about 2 minutes for healthy subjects. This is to reduce the 
participating time needed from the patients. 

As the data recorded are of relatively good quality, 
minimum or no pre-processing was performed in our 
experiment.  

C. Feature Extraction  

It is well known that discrete time signals or samples 
cannot be used for classification directly as there are too many 
sampled values to consider. A common approach is to perform 
feature extraction from sampled signals so that the signals can 
be represented by a manageable set of feature values. In this 
study, four feature extraction techniques are investigated and 
they are as described below. 

1) Mel-Frequency Cepstral Coefficients (MFCCs) 

In acoustic signal analysis, Mel-Frequency Cepstrum 
(MFC) is commonly used to represent the short time power 
spectrum of the signal. This feature is determined by 
performing a linear cosine transformation of the log of the 
power spectrum using a nonlinear MEL scale of frequencies. 
Mel-Frequency Cepstral Coefficients (MFCCs) [7] are the 
coefficients of MFC.  

A common way to derive MFCCs is by the following four 
steps [8]:  

(i) Compute the Fourier transform and hence the power 
spectrum of the signal. 

(ii) Map the power spectrum onto the MEL scale using a 
triangular overlapping window. 

(iii) Compute the log transform of the powers at each of the 
MEL frequencies. 

(iv) Compute the Discrete Cosine Transform of MEL log 
powers. The MFCCs are the amplitudes of the resulting 
spectrum. 

2) Perceptual Linear Predictive Coefficients (PLPCs) 

Perceptual linear prediction coefficient (PLPC) is similar 
to MFCC. The main differences between MFCC and PLPC 
are fourfold [9]:  

(1) The shape of the filter-banks in PLPC is trapezoidal, 
instead of triangular;  

(2) PLPC uses equal-loudness pre-emphasis to weight the 
filter-bank outputs;  

(3) PLPC uses cube-root compression instead of 
logarithmic compression;  

(4) PLPC uses a (parametric) linear-predictive model to 
determine cepstral coefficients, instead of (non-parametric) 
discrete cosine transform.  

More details of PLPC are given in [10,11]. 

3) Linear Prediction Coefficients (LPCs) 

Linear Prediction (LP) is a mathematical operation where 
the future values of a discrete-time signal are estimated as a 
linear function of the previous samples. The most common 
representation is: 

 ̂( )  ∑    (   )
 
                       (1) 

where  ̂( )  is the predicted signal value,  (   )  are the 
previous observed values,    are the predictor coefficients and 
  is the order.  

The error generated by this estimate is: 

 ( )   ( )   ̂( )                   (2) 

where  ( ) is the true signal value.  

There are two widely used methods for estimating the 
linear prediction coefficients, one is autocorrelation and the 
other is covariance [12]. 

4) Wavelet Transform-Based Features (WTFs) 

With its first introduction by Grossmann and Morlet [13] 
in the mid-1980s, wavelet transform has been increasingly 
applied in many areas such as pattern recognition, processing 
and synthesizing signals (e.g., speech), image analysis, and so 
on. 

One advantage of Wavelet Transform is that the signal 
could be simultaneously analyzed in physical (time, 
coordinate) and frequency spaces. Wavelet transform 
decomposes the signal into approximations and detailed space 
represented by wavelet coefficients in a series of sub-bands 
[14]. The coefficients can then be used for feature extraction. 
In this study, the following features are extracted [15]: 

(1) Maximum value of the wavelet coefficients in each 
sub-band. 

(2) Minimum value of the wavelet coefficients in each 
sub-band. 

(3) The standard deviation of the wavelet coefficients in 
each sub-band. 

(4) The mean of the absolute values of the coefficients in 
each sub-band. 

(5) The average power of the wavelet coefficients in each 
sub-band. 

(6) The mean of the coefficients in each sub-band. 

(7) The ratio of the mean of the absolute values of the 
coefficients of a sub-band and that of the adjacent sub-bands. 

D. Feature Selection 

Feature selection, also known as variable selection or 
attribute selection, is commonly used as a dimension reduction 
technique [16]. The purpose of feature selection is to select the 
most informative features for a specific purpose, e.g. detecting 
the presence of water in lungs.  

In this study, we employ a simple but effective feature 
selection method -- “Fisher’s Ratio” which measures the linear 
discriminating power of a feature    as the ratio of squared 

inter-class divergence to intra-class spread [16]: 

4259



  

  (  )   
(  ( )   ( ))

 

  ( )
    ( )

                              (3) 

where   ( ) and   ( )
  are the sample mean and variance of 

feature    respectively in a class c, for c = 1, 2.  The larger the 

FR value, the more discriminative the feature is. 

E. Classification  

In pattern classification, a classifier can be viewed as a 
mapping from a pattern space to a class-label space, or more 
specifically, a decision boundary in the pattern space which 
segments the pattern space into meaningful regions. In this 
study, we employ two popular classifiers: Support Vector 
Machines (SVMs) and k-Nearest-Neighbor (kNN). The 
former is a linear classifier while the latter is a nonlinear 
classifier. 

F. Performance Evaluation 

The performance of a pattern classification method is 
usually assessed based on the classification accuracy (ACC). 
For medical studies, the sensitivity or true positive rate (TPR) 
and the specificity or true negative rate (TNR) are often used 
instead. 

In order to determine the classification performance of the 
methods investigated, the data are divided into training data 
and testing data. A classifier is first trained on the training data 
and then tested on the testing data. There are several validation 
techniques for the estimation, such as the “leave-one-out” 
method, the “repeated k-fold cross validation” method and the 
“bootstrap” method. Although the cross validation is more 
widely used, it may exhibit large variability when the sample 
size is small [17]. In this study, the .632 bootstrap method [18] 
was used. For the purpose of reliable estimations, the number 
of repeats was set to about 100 times in our study.  

III. EXPERIMENTAL STUDY 

A. Experimental Setup 

There are 12 volunteers in our study. Two sets of data, one 
from the left lung and the other from the right lung, were 
recorded for each volunteer, with durations ranging from 40 
seconds to 2 minutes. As the duration of a human’s respiratory 
period (cycle) is approximately 3 to 4 seconds, we segment 
every record into segments of 4 seconds each (so that each 
segment contains one breathing cycle). Our study shows that, 
the results are not affected by using different parts of the 
breathing cycle and there is therefore no need to segment the 
signals from the start of the breathing cycle. The segmentation 
produces a total of 136 segments of signals for patients and 
165 segments of signals for healthy subjects. 

The segments of the same set of records are placed 
randomly as either the training sets or the testing sets of 
samples.  

The parameters of the classifiers were set to C=0.01 for 
SVM and k=3 for k-nearest-neighbor classifier. The order of 
LPC is set to     .  

B. Results and Discussion 

Fig. 2 shows the classification performance which includes 
the classification accuracy (ACC), sensitivity (TPR) and 
specificity (TNR), of the four feature extraction methods and 
the two classifiers. Table I gives the best classification 

accuracy (in percentage) where the numbers shown in the 
bracket are the number of features used.  

From the classification results shown in Fig. 2 and Table I, 
we observe that good classification performance can be 
achieved, especially by MFCC, PLPC and WTF (Fig. 2 (a), (b) 
and (d)). On TPR and TNR, we observe that TPR are better 
than TNR when MFCC and PLPC are used (Fig. 2 (a) and (b)), 
and the reverse is true when LPC and WTF are used (Fig. 2 (c) 
and (d)).  

Another interesting observation is that kNN is observed to 
perform better than SVM.  

TABLE I. THE BEST CLASSIFICATION ACCURACY 

MFCC 
SVM 90.7 (1) 

PLPC 
SVM 92.0 (1) 

kNN 95.7 (5) kNN 94.7(11) 

LPC 
SVM 66.6 (5) 

WTF 
SVM 85.0 (4) 

kNN 85.6 (9) kNN 92.5 (4) 

IV. CONCLUSION 

In this paper, we propose to use the acoustic (or sound) 
approach to detect the presence of water in lung (the sound 
sensor used for the experiment is a stethoscope). Four feature 
extraction methods and two classification methods have been 
investigated. The results obtained using data collected from 
patients and healthy subjects are very promising, with the best 
classification accuracy exceeding 95%, the best sensitivity 
exceeding 96%, and the best specificity exceeding 97%. These 
results show clearly the feasibility of detecting lung water 
using the lung sounds analysis approach. The sound-based 
approach proposed in this study will be beneficial to the design 
of portable devices for rapid and accurate lung water 
detection. 
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(a) MFCC 

 
(b) PLPC 

 
(c) LPC 

 
(d) WTF 

Fig. 2. Classification performance (Accuracy, TPR, TNR) of four feature extraction methods and two classifiers (left: SVM, right: kNN). y-axis gives the 
performance (in %) and x-axis represents the number of features used in the classification. 
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