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Abstract— Many of the automatic sleep spindle detectors
currently used to analyze sleep EEG are either validated on
young subjects or not validated thoroughly. The purpose of
this study is to develop and validate a fast and reliable sleep
spindle detector with high performance in middle aged subjects.
An automatic sleep spindle detector using a bandpass filtering
approach and a time varying threshold was developed. The
validation was done on sleep epochs from EEG recordings with
manually scored sleep spindles from 13 healthy subjects with a
mean age of 57.9 ± 9.7 years. The sleep spindle detector reached
a mean sensitivity of 84.6 % and a mean specificity of 95.3 %.
The sleep spindle detector can be used to obtain measures of
spindle count and density together with quantitative measures
such as the mean spindle frequency, mean spindle amplitude,
and mean spindle duration.

I. INTRODUCTION

Sleep spindles (SS) are generated from complex interac-

tions between thalamic, limbic and cortical areas. In sleep

microstructure they are one of the most important elements

and they are hallmarks of non-REM stage 2 sleep (N2)

[1]. The American Academy of Sleep Medicine (AASM)

defines SS as EEG phenomena with sinusoidal spindle-like

waveforms lasting 0.5-3 seconds having a frequency profile

at 11-16 Hz and most conspicuous in EEG recordings from

central deflections [2]. This definition of SS will be used

throughout this study. As the AASM standard does not

differentiate between slow (< 13 Hz) and fast (> 13 Hz)

oscillations, neither will this study.

SS are believed to mediate many sleep related functions

and considered to represent inhibition of sensory stimuli to

cortex thus maintaining sleep [3]. They are hypothesised to

have at least two functions in relation to cognition; being

a physiological measure of cognition and fast spindles are

probably involved in memory consolidation during sleep [4],

[5]. Also they possibly play a role in attentional processing

[6].

Manual scoring of SS is very time-consuming; even for

experts who only tend to agree in 70 ± 8 % of scores [7].

To standardize the scoring of SS, an automatic SS detector

is required to interpret sleep EEG.
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Several SS detectors using a bandpass filtering approach

have been developed and applied to analyze data relating SS

and cognition [8], [9], [10], [11], [12], [13], [14].

This study describes an SS detector based on the def-

initions stated by the AASM standard supplemented with

knowledge from sleep scoring experts at Glostrup University

Hospital, Denmark. The detector is thoroughly trained and

tested to gain insight into the performance of the new method

for automatic SS detection in sleep EEG.

II. METHODS

A. Subjects

The group used to train, test and validate the SS detector

consisted of 13 healthy subjects including five males and

eight females with a mean age of 57.9 ± 9.7 years. The

same group was used previously by Christensen et al. to

train, test and validate an SS detector using Matching Pursuit

and Support Vector Machine [15].

B. Polysomnographic recordings

Polysomnography (PSG) EEG data were used in this

study. All subjects underwent one night of full PSG recorded

outpatient. The PSG equipment was fitted at the clinic and

the subjects removed the equipment themselves the following

morning. The PSG recordings were performed in accordance

with the AASM standard using EEG electrodes located at

F3, F4, C3, C4, O1 and O2 with reference to the mastoids

according to the 10-20 system [16]. At the fitting of the

equipment the impedances of the electrodes were below 10

kΩ for all channels. EEG was sampled with a frequency of

256 Hz. Furthermore, tibialis anterior muscle tonus, nasal

flow, thorax abdominal respiratory movements, EOG, ECG,

submental muscle tonus and blood oxygen saturation were

recorded.

SS in the 13 subjects were manually prescored by vi-

sual inspection and approved by an experienced PSG tech-

nician using the program Nervus (V5.5, Cephalon DK,

Nørresundby, Denmark) as described in [15]. As randomly

selected sleep epochs were chosen for fully SS scoring, the

procedure ensured data from several independent subjects

without having to resort to the very time consuming task of

scoring SS in a full night recording. In total this resulted in

882 manually scored SS from 375 sleep epochs correspond-

ing to approximately three hours recording. The majority of

sleep epochs included, were manually classified as N2. As

described in [2], SS can be found in epochs scored as other

stages than N2. Therefore, the dataset included some epochs
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Fig. 1. Illustration of the important signal processing steps in the detection
of SS. The top graph shows the raw EEG signal from C3-A2. The second
graph shows the 11-16 Hz bandpass filtered version of the signal (1). The
third graph shows the rectified signal in blue and the 1 Hz envelope with
8 µV offset in red (2). Vertical black lines indicate segment boundaries. A
whole segment is classified as an SS candidate if the blue signal exceeds
the red threshold at minimum one sample between two boundaries (marked
with green dots), otherwise the segment is classified as background EEG. SS
candidates become true SS if the segment is not covering an alpha intrusion
or an artefact and has the correct duration. The bottom graph shows were
SS are detected using the detector with the stated settings.

from N1, N3 and REM in order to make the detector work

in these stages as well.

The raw sleep data, hypnograms and sleep events of the

subjects were extracted from Nervus (V5.5, Cephalon DK,

Nørresundby, Denmark) using the build-in export data tool.

Further analysis of data was performed in MATLAB (R14

or R2008a, The MathWorks, Natick, MA., USA).

C. A novel sleep spindle detection algorithm

This study aims to develop an automatic SS detector

during sleep. It is thus not intended for EEG from wake

periods. If the detector should be fully automatic it would

require a sleep-wake detector to initially locate sleep periods

in the EEG. The SS detector will work in a standardized

way classifying data as either SS or background EEG. The

purpose of this is to obtain various quantitative measures

describing the SS activity.

The algorithm relies on a bandpass filtering approach and

uses decision fusion by combining the results from two

individual detectors. Signals from one central deflection (C3-

A2) and one occipital deflection (O1-A2) are used by the

detector to detect SS in C3-A2. Both signals are bandpass

filtered using an equiripple filter with passband between 11-

16 Hz and stopbands at 10 Hz and 17 Hz with attenuation

of 10−4 using a zero-phase digital filtering approach. The

bandpass filtered signal can be expressed as:

y(n) = h11−16(n) ∗ x(n) n = 1, ..., N (1)

where x(n) is the raw signal from C3-A2 and h11−16(n)
is the impulse response of the 11-16 Hz bandpass filter.

The bandpass filtered C3-A2, y(n), is rectified by taken the

absolute value of the signal. A time varying threshold is

created by adding an offset to the envelope of the rectified

signal. The envelope, zi(n), is calculated using an equiripple

lowpass filter with stopband at the passband plus 1 Hz and

a stopband attenuation of 10−4 using a zero-phase digital

filtering approach. The first detector uses an envelope with

passband at 2.25 Hz and an offset of 3 µV. The other uses

an envelope with passband at 1 Hz and an offset of 8 µV.

The ith envelope can thus be described as:

zi(n) = hi(n) ∗ |y(n)| i = 1, 2 (2)

where |y(n)| is the rectified bandpass filtered raw signal and

hi(n) is the impulse response of the ith lowpass filter. The

first and second derivative of the envelope is approximated

using the central difference. The approximated first derivative

of the ith envelope is defined as:

z′i(j) =
zi(j + 1)− zi(j − 1)

2
i = 1, 2 j = 2, ..., N−1 (3)

where zi(n) is the ith envelope. Points of zero crossings of

the first and second derivative are located. A point at a zero

crossing of the second derivative is removed if it originates

from an almost stationary point of inflection on the envelope.

Thus, the points of zero crossings reflect the local extrema of

the envelope and its first derivative, and is used as boundaries

for SS candidates. A SS candidate is detected in the whole

interval between two boundaries when the rectified signal

exceeds the time varying threshold at minimum one sample

within these boundaries. A graphical illustration of the signal

processing steps is presented in Fig. 1.

After identifying SS candidates some are discarded. If

a candidate is more likely to be an alpha intrusion or if

the amplitude of the original EEG is too high (>85 µV)

according to the technicians at Glostrup University Hospital,

it is discarded. An SS candidate is also discarded if it has a

too short (<0.5 s) or too long (>3 s) duration according to

the AASM [2].

A single detector uses one lowpass filter to find the

envelope with a corresponding offset. The algorithm consists

of a fusion of two detectors. It is assumed that two detectors

working on different scales will compliment each other as

they possess different qualities. If at least one detector has

classified a sample as SS, then the sample is marked as SS

in the final binary classification vector. If both detectors has

classified a sample as background EEG, the sample is marked

as background EEG in the final result.

The algorithm is presented in pseudocode in Algorithm 1.
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Algorithm 1 SS algorithm using a fusion of 2 detectors

Bandpass filter signals from C3-A2 and O1-A2 in the 11-

16 Hz band

for i = 1 to 2 {detector no.} do

if i = 1 then

fpassband ← 2.25 Hz and offset ← 3 µV

else if i = 2 then

fpassband ← 1 Hz and offset ← 8 µV

end if

Calculate envelope of rectified bandpass filtered C3-A2

Find points of local extrema of the envelope and its first

derivative (ignore almost stationary points of inflection

on the envelope)

if rectified filtered C3-A2 > envelope + offset then

mark interval between surrounding points of extrema

as SS candidate

end if

if SS frequency ≤ 13 Hz and power of bandpass filtered

O1-A2 > power of bandpass filtered C3-A2 then

remove SS candidate {alpha intrusion}
end if

if amplitude of rectified C3-A2 > 85 µV then

remove SS candidate {artefact}
end if

if duration of SS < 0.5 s or duration of SS > 3 s then

remove SS candidate {wrong duration}
end if

return detectioni(n)
end for

if
∑

2

i=1
detectioni(n) ≥ 1 then

result(n)← 1

else

result(n)← 0

end if

D. Validation of the sleep spindle detector

Different statistical measures were calculated to validate

the performance of the algorithm for SS detection: True

Positives (TP), False Positives (FP), True Negatives (TN)

and False Negatives (FN). These numbers are calculated on

sample basis. The obtained values were used to calculate

the sensitivity, specificity, and the Matthews Correlation

Coefficient (MCC) [17]. MCC was chosen because it is a

balanced evaluation of the performance of a binary classifier

and it is symmetric with respect to FP and FN [18]:

MCC =
TP · TN − FP · FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4)

The SS algorithm was validated using the leave-one-

subject-out method due to the small number of subjects.

A subject with abnormal SS would greatly influence the

performance if the 13 subjects were divided in separated

training and test groups. Therefore, one subject was held out

of the training set, the algorithm was optimized to fit the data

from the remaining twelve subjects and the optimized model

was then tested on the held out subject. This was done for

all subjects.

The training phase included investigation of the perfor-

mance of the detector with 11 × 25 = 275 combinations of

lowpass filters and envelope offsets. The passband frequen-

cies ranged from 0-2.5 Hz with a step size of 0.25 Hz and

the envelope offsets ranged from 2-8 µV with a step size of

0.25 µV. The parameter setting yielding the highest MCC

was chosen for the optimal SS detector. This SS detector,

detection1(n), was then fused with all other detectors to find

a fusion of detectors yielding even higher MCC. This process

was repeated until the model used five detectors.

The SS detector in combination with detection1(n) yield-

ing the highest MCC is denoted detection2(n) and so on.

How to fuse the detectors depending on the number of inde-

pendent detectors is explained in pseudocode in Algorithm

2; where an independent detector is denoted by k, j denotes

how many independent detectors are fused, SS samples are

given the value 1 and background EEG samples are given

the value 0.

Algorithm 2 Fusion of SS detections

for j = 1 to 5 do

if
∑j

k=1
detectionk(n) ≥ 1 then

resultj(n)← 1

else

resultj(n)← 0

end if

return resultj(n)
end for

When testing the different models (using a fusion of 1-

5 independent detectors) on the held out subjects, it became

clear that little or no advantage was won by applying a fusion

of more than two detectors. Therefore, during the training

phase fusions of maximum five detectors were carried out.

III. RESULTS

The mean performance when testing the model using two

detectors yielded a sensitivity of 84.6 % and a specificity

of 95.3 %. The mean performance was affected by a single

outlier with very low sensitivity (41.8 %) and thus the median

performance of the algorithm should be mentioned. It yielded

a sensitivity of 89.9 % and a specificity of 95.1 %. Further

details of the performance are listed in table I.

TABLE I

PERFORMANCE OF THE SS ALGORITHM USING DECISION FUSION BY

COMBINATION OF TWO SS DETECTORS

Sensitivity Specificity

min - max 41.8 - 96.6 91.6 - 98.9
mean ± std 84.6 ± 15.6 95.3 ± 2.2
25th percentile 83.1 94.1
50th percentile 89.9 95.1
75th percentile 93.7 97.3
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On a standard PC with a 2.00 GHz processor using the

presented algorithm for SS detection, it takes approximately

five minutes to detect SS in a whole night of sleep (∼8 hours

of data).

IV. DISCUSSION

In this study a new SS detection algorithm based on the

AASM definitions of SS is developed and validated. The

algorithm includes a fusion of two detectors with compli-

mentary qualities.

As the used data set only includes data from sleep stages,

the algorithm for SS detection should not be applied on data

from wake periods. Most of the validation data originate

from N2, and thus the algorithm should be used with caution

in other sleep stages than N2. The risk of false detections

during wake is high due to artefacts from muscle tone and

movement.

The automatic SS detector is validated on a data set

with a high mean age. The detector in [15] achieved the

approximate same mean sensitivity around 85 %. The current

detector has a considerable higher mean specificity of 95 %

compared to 85 % in [15]. One may argue that this result is

due to over-fitting since the agreement between SS scorers

is only 70 % [7]. Due to this fact, part of the detected FP

could be true SS. Despite the low inter scorer agreement,

visual inspection is still the golden standard when detecting

SS.

Unfortunately, very few of the SS detectors used to analyze

data relating SS and cognition are thoroughly validated.

The papers describing the detectors do either not state the

sensitivity or the specificity of the algorithm [9], [10], [11],

or both [12], [13], [14]. It would be interesting to conduct a

thorough validation of these algorithms on the same dataset,

including the one in this study.

Compared to the presented SS detector, the SS detector

presented by [8] is validated on a smaller number of subjects.

Their performance has a lower mean specificity with a larger

range (93.5 %, 88-100 %). On the contrary, their mean

sensitivity is higher with a smaller range (96.2 %, 91-100

%). This reveals one of the biggest problems concerning

automatic SS detectors; namely low specificities. Keeping

in mind that if the specificity is only 90 %, 10 % of all

background EEG could in fact be detected as SS.

V. CONCLUSIONS

This paper describes a simple, fast and thoroughly val-

idated method for automatic SS detection in sleep EEG.

The mean age of the control subjects is high, making

this algorithm ideal to apply in middle aged subjects. The

detector achieved a performance with a median sensitivity of

∼90 % and a median specificity of ∼95 %.

We believe that the here presented SS detector has

achieved well enough performance in order to be used in

a clinical investigation. In a future study this SS detector

will be applied on sleep EEG from middle aged subjects.
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