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Abstract² Idiopathic Rapid-Rye-Movement (REM) sleep 

Behavior Disorder (iRBD) is a strong early marker of 

Parkinson's Disease and is characterized by REM sleep without 

atonia (RSWA) and increased phasic muscle activity. Current 

proposed methods for detecting RSWA assume the presence of 

a manually scored hypnogram. In this study a full automatic 

REM sleep detector, using the EOG and EEG channels, is 

proposed. Based on statistical features, combined with subject 

specific feature scaling and post-processing of the classifier 

output, it was possible to obtain an mean accuracy of 0.96 with 

a mean sensititvity and specificity of 0.94 and 0.96 respectively. 

I. INTRODUCTION 

Rapid-Eye-Movement (REM) Sleep Behavior Disorder 

(RBD) is characterized by REM sleep without atonia 

(RSWA) and consequently increased muscle tone and 

excessive phasic muscle twitch activity of the submental or 

limb surface electromyographic (EMG) measures [1]. RBD 

without current sign of neurodegenerative disorder is 

designated as idiopathic RBD (iRBD). This term is 

questioned as RBD and other non-motor symptoms and 

ILQGLQJV� RIWHQ� REVHUYHG� LQ� 3DUNLQVRQ¶V� 'LVHDVH� �3'�� DQG�

atypical PD such as multiple system atrophy and Lewy Body 

Dementias. Additionally, more than 50% of the subjects 

diagnosed with iRBD will develop a synnocleinopathy 

within a time span of 5-10 years [2-7].  

 

Correct detection of RBD is therefore highly important, 

provided that neuroprotective treatment becomes available. 

All proposed methods for detecting RSWA assume the 

presence of a manual scored hypnogram [8-13]. The aim of 

the current study is to automatically detect the REM sleep 

stage according to the new international sleep-scoring 

standard from the American Academy of Sleep Medicine 

(AASM) [14]. According to the AASM, a sleep stage epoch 

of 30 seconds must be scored as REM, when the electro-

encephalography (EEG) has low amplitude with mixed 

frequencies (i.e. 4-7 Hz) in the frontal, central and occipital 

electrodes Furthermore, there should also be relatively low 

muscle tone in the chin. If there are no indications of another 

sleep stage between the REM events in the electro-

oculography (EOG) channels, it is assumed to be REM 

sleep. More detailed description can be found in [14].  

In a previous study [15] it was concluded, based on the data 
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and method, that the muscle tone had little, if any, influence 

on the REM sleep detection.  However, the method has been 

enhanced by subject-specific feature scaling, and post 

processing of the classifier output. The features from each 

subject were re-scaled by a modified min-max method, 

where the minimum and maximum values were estimated by 

percentiles. Furthermore, the binary classifier output was 

post-processed by averaging the classifier output using a 

Blackman window and then compared to a user-defined 

threshold.  

II. DATA 

A.  Subjects and Demographics 

A total of 16 subjects from the Danish Center for Sleep 

Medicine, Department of Clinical Neurophysiology, 

Glostrup University Hospital, Denmark, were enrolled in 

this study. The subjects were divided into two groups 

categorized by their diagnosis. The demographics of the 

groups are summarized in Table I.  

TABLE I.  DEMOGRAPHICS 

 No subjects (�, �) Age :ÆG Ì; [years] 

Control 8 (5, 3) 60.8 r 9.4 

iRBD 8 (3, 5) 60.6 r 8.5 

None of the involved subjects were taking any medication 

which was known to affect the sleep. The presented data did 

not allow us to balance the two groups in age and gender. 

B. Data Acquisition and Scoring of Hypnograms 

All subjects underwent one full night polysomnography in 

accordance to the AASM. This is equivalent to 

approximately eight hours of sleep per subject when using 

data from lights-off to light-on. In this study only the left 

and right EOG channel combind with the F3-A2, C3-A2 and 

O1-A2  EEG channel were used. A2 denotes the right 

mastoid. To ensure the quality of each recording, visual 

inspection of all the recordings were conducted, and 

corrupted recordings in which the analysis channels were 

disconnected or continuously contaminated with artifacts 

were rejected. The sampling frequncy of the analyzed sleep 

data was 256 Hz. The sleep data were analyzed in MATLAB 

(R2010b, 64-bit, The MathWorks, Natick, MA, USA)). 

C. Sleep Stage Distribution  

The total number of recorded epochs with a duration of 30 

seconds are summarized in Table II. 

TABLE II.  TOTAL NUMBER OF MANUAL SCORED 30-SECOND EPOCHS 

 Wake (%) NREM (%) REM (%) Ã:ÚÙÙ¨;  
Control 1645 (20) 5159 (61) 1588 (19) 8392 

iRBD 1985 (25) 4696 (60) 1182 (15) 7863 
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The non-REM sleep, which is denoted NREM in Table II, 

corresponds to the intersection of the three non-REM stages 

NREM-1, NREM-2 and NREM-3 respectively.  

III. METHOD 

In REM sleep the eyes tend to move rapidly sideways under 

closed eyelids. This produces rapid conjugated eye 

movements, and since the eye acts as a dipole it appears as 

³RXW-of-SKDVH´� (2*� FKDQQHO� GHIOHFWLRQV�� Furthermore, the 

EOG channel will also measure the muscle activity 

surrounding the eye. It is assumed that the ³lower´ 

frequencies characterize the rapid eye movements, while the 

³higher´ frequencies characterize the surrounding muscle 

activity. In [17] a 4th order Butterworth bandpass filter with 

cutoff frequencies at 1 and 5 Hz respectively was 

successfully used to separate the REM from Slow-Eye-

Movement, baseline drift and EMG activity. This 

superposition property may be exploited to measure the 

increased muscle activity during wake. According to [14] it 

is recommended that the EOG signals should be viewed in 

the frequency band 0.3-35 Hz, while the EMG should be 

viewed in the frequency band 10-100 Hz. In this study a less 

narrow band was used. The left and right EOG channel, 

denoted EOGL and EOGR respectively,  were band-pass 

filtered by 4th order Butterworth bandpass filters using the 

zero-phase filtering approach. The frequency bands are 

defined in Table III.  

TABLE III.  FREQUENCY BANDS OF THE EOG CHANNELS 

Modality Band Low-Cut (3dB)  High-Cut (3dB) 

EOGL éP   1 Hz 10 Hz 

EOGL îP 10 Hz 45 Hz 

EOGR éV   1 Hz 10 Hz 

EOGR îV 10 Hz 45 Hz 

 

The é-band (1-10 Hz) is assumed to characterize REM, 

while the î-band (10-45 Hz) is assumed to contain EMG 

activity. The data was recorded over a period of three years, 

using different amplifier systems, where the lowest cut-off 

frequncy of the anti-aliasing filters was 65 Hz. During REM 

sleep the EEG has low amplitude with mixed frequency 

content, also known as the background sleep EEG. The 

frequency range is typically 4-7 Hz. However, this may also 

occur in the NREM sleep [14]. The EEG channels (F3-A2, 

C3-A2, O1-A2) was filtered into the clinical bands by 4th 

order Butterworth bandpass filters, using the zero-phase 

filtering approach. The frequency bands are defined in Table 

IV. 

TABLE IV.  FREQUENCY BANDS OF THE EEG CHANNELS 

Modality Band Low-Cut (3dB)  High-Cut (3dB) 

EEG Ü   1 Hz   4 Hz 

EEG à   4 Hz   8 Hz 

EEG Ù   8 Hz 13 Hz 

EEG Ú 13 Hz 30 Hz 

EEG Û 30 Hz 45 Hz 

 

It was not necessary to filter the power-line noise in both 

modalities, due to the selcted bandwidth. 

A. Data Segmentation 

The preprocessed sleep data, from a given subject, was then 

segmented into mini-epochs of 3-second length, which is 

widely used in the sleep community. Notice, in sleep scoring 

an epoch is normally 30 seconds. From each mini-epoch a 

total of 18 characterizing features were extracted from the 

EEG and EOG channels. This was conducted on all 16 

subjects.  

B. Feature Extraction 

The muscle tone was analyzed by computing the inter-

quartile-range (IQR) of the îP and îV band. The IQR is 

assumed to be less affected by noise and artifacts, such as 

e.g. EMG and ECG artifacts. That is, if the difference 

between the 3rd quartile (75th percentile) and 1st quartile (25th 

percentile), for vector X is given by: 
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(1) 

Then the IQR features of îP and îV, which are more likely 

to represent the muscle tone, is given by: 
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Where s Q J Q 0 denotes the mini-epoch number of total 0 

mini-epochs. Several percentile combinations have been 

tested, but the 25th percentile and 75th percentile did perform 

best on our data. The characterization of the rapid-eye-

movements was analyzed by computing the normalized-

cross-correlation-coefficients of lag 0 (NCCC) of the éP and 

éV band respectively. The NCCC is given by: 
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(4) 

 

where cov denotes the sample covariance between the two 

variables, while var denotes the sample variance. The three 

EEG channels were analyzed with respect to the clinical 

bands defined in Table IV using the IQR approach defined 

in (1): 

 

 �á
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A total of 3 EOG features were computed and 5 EEG 

features from 3 EEG channels were computed. The features 

were then merged into a [1x18] feature vector denoted 	á
W, 

where � L <sátá å ásx= denotes the subject number. 
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C. Feature Scaling 

To avoid features with greater dynamic range dominating 

those with smaller dynamic range, each feature was re-

scaled into the range of approximately [0,1]. That is, the 

individual features from each subject were re-scaled 

according to a modified min-max method. The subject-

specific feature scaling is given by: 

 

 
	èW L 	W F����:	W;�

����:	W; �F����:	W;� 
 

(10) 

 

Since the original min-max scaling method is not robust 

towards outliers, the minimum and maximum were 

estimated by computing the quartiles of the individual 

features. The upper and lower boundary is given by:  

 

 ����:	W; �� �5:	W; 
 

(11) 

 ����:	W; �� �7:	W; 
 

(12) 

Again, several good percentile combinations have been 

tested, but the 25th percentile and 75th percentile did perform 

best on our data. 

D. The Nearest Neighbor Classifier 

The objective of a classifier is to classify the feature sampels 

into the respective classes, i.e. the REM sleep versus every-

thing else. The standard Nearest Neighbor classifier (k-NN) 

identify the k nearest points from the training data set and 

then assign a new test point to the class having the largest 

number of representatives among this set. In this study the 

Euclidian distance was used to measure the distance between 

points [18]. The k-NN is a widely used supervised learning 

method and has successfully been applied to different areas, 

including sleep analysis [19]. 

E. Training of the k-NN Classifier 

The manual hypnogram was modified into a target vector by 

first labeling the REM sleep epochs '+2' and everything else 

'+1'.  The target vector was then extended by successfully 

repeating each epoch 10 times. This increases the ³sampling 

rate´�IURP�RQH�VFRULQJ�SHU����VHFRQG��HSRFK��WR����VFRULQJV� 

per 30 second, which is equivalent to 1 scoring per 3 second 

(mini-epoch), cf. Fig. 3. In this study the k-NN classifier was 

used and the k variable was found by using a simple grid-

search approach combined with the leave-one-out cross 

validation scheme. Since the samples from each subject may 

be correlated, a fold consists of whole subjects. A single fold 

was held out for testing, while the remaining 15 folds were 

used for training. This is done 16 times, so each fold is used 

for testing. The individual subject outputs were then post-

processed. 

F. Post-processing 

The agreement between the detected REM sleep and the 

manually scored REM sleep (i.e. hypnogram) was improved 

by post-processing the k-NN classifier output. Normally, the 

NREM and REM sleep tend to alternate through the night in 

cyclial fashion, where REM sleep usually occure in 4-6 

discrete episodes each lasting between 5-20 min [20]. This 

can be seen in Fig. 3. This trend was enhanced by post 

processing the REM sleep candidates from the output y of 

the classifier. In this study the post-processing was obtained 

by filtering the binary output of each individual subject with 

a normalized  Blackman window defined as: 
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where r Q I Q / and M is the estimated duration of the 

Blackman window. The  ì corresponds to the normalization 

coefficient defined as: 
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(14) 

 

Then the post-processed output is given by symmetrical 

averaging: 

 Uä:J; � S Û U 

 
(15) 

The post-processed output was then classified into the two 

classes REM and NREM by using an estimated threshold 

(same threshold for all subjects). The threshold was 

estimated by testing different threshold values, denoted Tavg, 

in the grid-search approach. The Tavg was varied from 0 to 1 

in 0.01 steps. 

IV. RESULTS AND DISCUSSION 

A total of two three variables have to be estimated (kavg=31, 

Tavg=0.18, M=450s). All variables were estimated by a 

simple grid-search approach combined with the leave-one-

out cross validation scheme. The variable combination with 

the highest mean accuracy over the test folds was then 

chosen. The results are summarized in Fig. 1 and Fig. 2  

 

         
Fig. 1. Accuracy (blue), Sensitivity (green) and Specificity (red) of each 

test fold (subject) in both classes. 

 

       
Fig. 2. False positive sleep stage distribution of each test fold (subject) 

in both classes. NREM-3, NREM-2, NREM-1 and Wake corresponds to 

blue, cyan, yellow and red respectively. 

 

The performance of each test fold, which corresponds to 

each subject, is shown in Fig. 1. Furthermore, the 
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performance is also divided into the two classes control and 

iRBD. The mean accuracy, sensitivity and specificity of all 

16 test folds are 0.96, 0.94 and 0.96 respectively. However, 

a small, but insignificant, sensitivity drop in the iRBD class 

can be seen, especially from subject 12, 14 and 16 

(Wilcoxon rank sum test, two-sided, 5%, p=0.14). 

Furthermore, it appears that the primary false positive comes 

from the NREM-2 sleep stage, cf. Fig. 2. The manual 

scorings used for training the k-NN classifier are labeled 

with uncertainties. The difficulty of scoring REM sleep in 

iRBD patients may have an influence on the performance. In 

this study the subjects were only scored once. Multi-scorings 

(at least three) of the REM sleep may reduce some of the 

uncertainties. A more accurate result may also be obtained if 

the hypnogram were scored in 3 second mini-epochs instead 

of the traditional 30 second epochs, especially in the 

transition regions where epochs may be a mixture of stages. 

The proposed method does have some disadvantages, 

especially when REM sleep is highly fragmented, cf.  Fig. 3. 

  

 

 

 
Fig. 3. The first plot shows the manually scored hypnogram, while the 

second plot shows the outcome of the post-processing scheme. The third 

plot shows the final classification with respect to the manual scoring. 

 

When the subject frequently ³jumps´ in and out of REM 

sleep, the moving average post-processing scheme, due to 

the large window duration, tends to merge the small 

fragmentations together. This occurs in the first and second 

REM sleep period in Fig. 3. The k-NN classifier is highly 

influenced by the number of training patterns in each class. 

Hence, decisions in the overlapping regions will be 

influenced by the dominating class, which in this case 

corresponds to NREM. To overcome this a Support Vector 

Machine (SVM) could be used as classifier. Hopefully, this 

would improve the overall classification, and shorten the 

moving average window duration. 

V. CONCLUSION 

An enhanced min-max subject-specific feature scaling in 

combination with post-processing of the k-NN classifier 

output, using a moving average approach, was proposed and 

tested. It was possible to correctly classify REM sleep 

epochs with a mean accuracy of 0.96. The robust method 

reflects the potential of detecting REM sleep in subjects with 

risk of developing PD. In this context, this is the first step of 

analyzing REM sleep without atonia automatically. The 

proposed method tends to merge small REM sleep 

fragmentations together. This may be addressed by using an 

alternative classifier, such as the SVM, combined with a 

smaller moving average window. 
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