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Abstract— This study compares two signal entropy measures,
Sample Entropy (SampEn) and Detrended Fluctuation Analysis
(DFA) over real EEG signals after a randomized sample
removal. Both measures have demonstrated their ability to
discern between, among others: control and pathologic EEG
signals, seizure free or not, control and opened eyes EEG, and
side of brain signals.

Results show that SampEn behaves better when analyzing
control signals, while DFA provides better segmentation results
between epileptic signals, in the context of sample loss, partic-
ularly when discerning between seizure and seizure free signal
intervals.

I. INTRODUCTION

Biomedical signals are usually highly nonlinear and non-

stationary, their statistical characteristics often change with

time. Classical linear or non linear dynamic analysis methods

are thus not suitable for their analysis as they are based on a

implicit assumption of stationarity, which is rarely the case

in this type of signals [1].

Entropy measures are a family of statistics that provide

information about the chaotic or deterministic nature of a

signal by quantifying the time–series regularity, namely, they

measure the likelihood that runs of patterns that are close,

remain close in the next incremental comparison [1].

This work compares Sample Entropy (SampEn) and De-

trended Fluctuation Analysis (DFA) to characterize sample

loss on EEG signals. A previous work showed that SampEn

was found to be the regularity measure which provides better

segmentation results for the analyzed EEG signals, using

SampEn, Approximate Entropy (ApEn) and Multi Scale

Entropy (MSE), considered in [2].

As a novelty, in this study we compare SampEn against

Detrended Fluctuation Analysis (DFA), a less used entropy

estimator, but that has provided excellent results where other

entropy metrics failed. The comparative analysis is carried

out in the context of sample loss, situation often found
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in signal compression or transmission schemes, such as

telemedicine applications.

Ambulatory monitoring or home monitoring are common

practice nowadays. The acquired data need to be remotely

sent to a medical facility for it analysis. This data transmis-

sion is performed using radio links, which can undergo con-

nection interruptions, packet loss, high noise or interference

[3], [4]. These techniques present limitations, such as energy

saving or hardware design, which requires data compression

to be performed [5]. All the previous mentioned can also

introduce a randomize sample loss into the original signal,

which needs to be characterized.

II. METHODS AND MATERIALS

We computed SampEn and DFA over different types of

EEG records after a randomized data removal. Results were

evaluated in terms of the cross correlation coefficient (CC),

the confidence intervals (CI), and statistical tests.

A. SampEn algorithm

SampEn is an entropy measure proposed as an improve-

ment of Approximate Entropy (ApEn) derived by Richmann

et. al. [1] in order to reduce ApEn bias due to self–

matches and record length. It is the negative logarithm of

the conditional probability that two sequences which are

similar for m points within a tolerance r, remain similar

at the next point, where self–matches are not included in the

computations of the conditional probabilities [1].

Let’s consider a time–series {u(j) : 1 ≤ j ≤ N} of

length N , and define the runs of length m accord-

ing to: xi = xm(i) = {u(i+ k) : 0 ≤ k ≤ m− 1}. A dis-

similarity measure needs to be defined in order to de-

termine which runs are similar within a tolerance r.

The dissimilarity measure is defined as dm(xi, xj) =
max {|xm(i)− xm(j)| : 0 ≤ j ≤ N −m}, then the condi-

tional probability and thus SampEn are obtained by:
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SampEn(m, r,N) = − log
Am(r)

Bm(r)
(5)

B. Detrended Fluctuation Analysis (DFA)

DFA is defined as the modified root mean square of a ran-

dom walk. It enables the detection of long–range correlations

embedded in a seemingly nonstationary time–series, while

avoiding spurious detection of apparent long correlations that

are an artifact of nonstationarity. DFA explores the potential

utility of scaling alterations in the detection of pathologic

states [6].

Let’s define a windowing sequence with different window

lengths {Li(k) : 1 ≤ i ≤ I , 1 ≤ k ≤ K}, where I is the

maximum number of windows in the sequence, and K the

length of the window, and compute an integration of the

series defined:

y(n) =

n
∑

n=1

u(n) − ū (6)

where ū is the signal mean. For each windowing length Li

of K samples, a least–square fit with a 1st order polynomial

function, yK(n), is computed for each segment inside the

window and calculate the root–mean square error as:

F
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Finally, a scaling coefficient, α is obtained from the rela-

tion between the window lengths and (8) in the logarithmic

scale, this is: F (K) ∝ Kα [6].

Power–law correlations can be divided into 3 main cate-

gories in terms of α. If 0 < α < 0.5 power–law correlations

are said to be of different type, anti–correlated data, if

0.5 < α ≤ 1 power–law correlations are persistent and of

long–range and finally if α ≥ 1 correlations exist but cease

to be of a power–law form [6].

C. Evaluation

Evaluation of the sample loss influence on entropy calcu-

lations is performed in terms of the correlation coefficient

(CC), the confidence intervals (CI) and a statistical discrim-

ination test.

The CC is computed according to Eq.(9), between the

original series entropy value and the entropy value of the

series after the random sample loss removal:
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where RM refers to the regularity measure (SampEn or

α) of the original time–series, RMr is the RM of the

reduced sample time–series, Ns is the number of signals

being analyzed and µRM is the mean value of RM . The

correlation coefficient is used to assess the clinical validity

of the results (CC ≥ 0.8–0.9) [3].

The CI are computed in terms of the mean (µ) and the

mean standardized error (σ), according to:

CI = [µ − 2σµ, µ + 2σµ] (10)

µ =
1

Ns

Ns
∑

i=1

RM (11)

σµ =
σ

√
Ns

(12)

where σ denotes the standard deviation of the data.

Finally, a Student T-Test is performed to obtain statistical

values for the discrimination between data.

D. Experimental set

The experimental EEG database consists of 5 data sets,

each containing 100 single–channel EEG segments of 23.6

sec. duration. These segments were selected and cut out

form continuous multichannel EEG recording after visual

inspection for artifacts. They also had to fulfill a stationarity

criterion.

The five sets, denoted A–E contain different signals. Data

sets A and B are healthy volunteer surface EEG, in a relaxed

open eyes state (A) or relaxed close eyes state (B). Sets C,

D and E contain epileptic signals. Set D was recorded from

within the epileptogenic hippocampal formation and set C

from the hippocampal formation of the opposite side of the

brain. set E only contains seizure activity while C and D

contain seizure free intervals [7].

SampEn was computed with traditional parameters, m=2

and r=0.15. DFA windowing lengths were define according

to [8], where only integers divisors of N were considered,

so as to consider all the information in the signal by not

discarding any samples. Windowing lengths had to satisfy:

Li : mod(N,Li) = 0.

E. Sample loss generation

For each signal in the database, an auxiliary time–series of

length N in terms of a random distribution was generated.

The data in the auxiliary signal were sorted, and the first

R values, which corresponded to the data removal percent-

age, were removed from u(j). This process was repeated

100 times for each removal percentage. The signals were

characterized by the mean value of the 100 realizations.

DFA main drawback is the number of windows, as the

sequence needs to have at least 3 to provide reliable results.

Therefore, not all removal percentages were suitable for

analysis. The removal percentages analyzed were R =
{0, 5, 10, 15, 20, 30, 45, 60, 65, 70, 75, 80, 85} which covered

a wide range of values.
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III. RESULTS

Both DFA and SampEn exhibit a CC ≥ 0.8 for all sample

loss ratios considered, enabling the clinical validity of the

signals even when more than half of the samples are lost.

Fig.1–Fig.4 show the CI of the entropy measures for the

different types of signals considered. Fig.1 shows SampEn

(Fig.1.a) and DFA (Fig.1.b) in terms of the sample loss

ratio between healthy and epileptic EEG. A better seg-

mentation and a clearer and simpler segmentation boundary

can be set for SampEn, although DFA only loses seg-

mentation capability for 4/13 ratios considered (pValue =

{0.274, 0.663, 0.053, 0.203} for R={20, 75, 80, 85}), respec-

tively. There is not a clear trend in α for each group, as for

SampEn, control (CT) signals present higher entropy values

for any R value, indicating lower regularity, α is higher for

some R values and lower for others.

Fig.2 presents the CI for open vs. closed eyes CT EEG.

Both regularity measures, SampEn and DFA, allow a clear

separation between both types, but as in Fig1 the separation

boundary is again easier to compute in SampEn than in DFA.

For the first one, a lower order polynomial function would

be required. The p–value for Student T-test is 0 for any R

value in both measures. CI are nonoverlapping.

Fig.3, presents the segmentation between seizure free

signal intervals and seizure signal intervals on epileptic

(EP) EEG signals, for lower R than 60% (pValue = 0.243,

CI=[1.114, 1.182] for seizure free and CI=[1.333, 1.245] for

seizure signals). SampEn allows the differenciation between

both types of signals, while DFA enables it for the whole

range of R considered, with nonoverlapping CIs and pValue

= 0 for any R.

The last segmentation considered is presented in Fig.4.

This segmentation is between side brain EEG signals,

namely, EEG coming from the hippocampal epileptogenic

zone and EEG coming from the hippocampal region on the

opposite side of the brain. On a first sight, both measures can

enable segmentation but when proceeding with the Student T-

Test statistical analysis, it can be seen that p–values for Sam-

pEn are higher than 0.05 for any R, stating no segmentation

is possible. For DFA, the p–value yields lower results than

0.022 for any R, presenting only overlapping CI for R=60%

(CI = [0.529, 0.559] for epileptogenic zone and [0.555,

0.576] for the opposite side) but allowing segmentation.

Finally, Fig.5 shows the variability of both entropy mea-

sures, SampEn (Sp) and DFA (α), along with the samples

loss ratio (R). DFA always exhibits a lower variability range

than SampEn, for any type of signal considered.

IV. DISCUSSION

Both entropy measures enable clinical validity, since for

any sample loss ratio, R considered, the CC is higher than

0.8 for any type of EEG in this study.

In Fig.1, it can be observed that SampEn has a more stable

behavior, as it is an increasing function of R, which can

be modeled by a low order polynomial function, whereas

DFA has an unpredictable behavior, since for some R control

signals, it yields lower values than pathologic signals and
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Fig. 1. Segmentation between control (CTRL, blue squares) vs. epileptic
(PAT, red circles) subjects in terms of the sample loss ratio. (a) SampEn,
(b) DFA scaling exponent (α).
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Fig. 2. Segmentation between control subjects with opened eyes (blue
squares) vs. control subjects with closed eyes (red circles), in terms of the
sample loss ratio. (a) SampEn, (b) DFA scaling exponent (α).

vice–versa. This makes SampEn a more robust measure when

comparing control vs. pathologic signals. With an adaptive

threshold algorithm, defined in terms of the signal and R,

identification and classification of epileptic patients could

be performed, showing how the regularity of the signal is

increased for epileptic patients, conclusions that can no be

derived by just observing α.

The same reasoning can be done when comparing con-

trol EEG recorded with open or closed eyes (Fig.2). Both

measures enable segmentation with nonoverlapping CIs and

low Student T–test for any R, but SampEn enables an easier

segmentation than DFA.

When analyzing epileptic patients (Fig.3 and Fig.4) DFA

performance is higher. SampEn only enables segmentation

between seizure free and seizure intervals for R ≤60%,

while DFA enables it not only for them, but also between

areas of the brain. What is even more interesting is that DFA

behaviour is almost uniform, just showing an increment in α

for seizure free intervals or the opposite hippocampal area.

The similar behaviour in the scaling coefficient α in both
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Fig. 3. Segmentation between seizure free intervals (red circle) and during
seizure intervals (blue square) in terms of the sample loss ratio. (a) SampEn,
(b) DFA scaling exponent (α).
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Fig. 4. Segmentation between recording areas, epileptogenic formation
hippocampal area (blue squares) and the opposite hippocampal area (red
circles) in epileptic patients. (a) SampEn, (b) DFA scaling exponent (α).
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Fig. 5. Variability of the entropy measures (Meas.) considered SampEn
(Sp) and DFA ( α) for (a) Control EEG, (b) epileptic EEG, (c) control
opened eyes EEG, (d) control closed eyes EEG, (e) during epileptic
seizures, (f) seizure free EEG on epileptic patients, (g) epileptogenic zone
of the hippocampal formation , seizure free EEG and (h) opposite to the
hippocampal formation, seizure free EEG.

experiments, could enable the prediction of a seizure taking

place.

Finally, for any of the signal groups considered, the

variability of the entropy measure in terms of R is lower

in DFA, which makes it a more robust measure in general.

On the contrary, DFA does not allow segmentation for any

case of the study.

V. CONCLUSION

This work presents a characterization and comparison

study between SampEn and DFA in terms of signal type

segmentation capabilities.

SampEn has demonstrated to perform better on discerning

control vs. pathologic (epileptic) EEG records and when

analyzing different types of control EEG signals. DFA

performs better when analyzing seizure free and seizure

signal segments, both coming form epileptic patients, or even

between the recording areas.

We can conclude that even though DFA shows a lower

variability scaling factor for any R considered, SampEn

performs better and provides a better segmentation with

a clearer boundary when comparing control vs. epileptic

signals and when studying control EEG. For the study of

pathologic signals, we encourage the use of DFA, as it

allows better discrimination and enables the possibility of

temporally anticipating when a seizure might occur (due to

a decrease in α).

As current and future work, we are now characterizing

additional entropy estimation measures by using the same

database and comparing the results with previous ones.

A seizure prediction algorithm is being studied by using

DFA in a pseudo–real time implementation. Additionally, a

classification algorithm based on SampEn in being assessed,

for identification of epileptic subjects in an automatic way

before seizures occur.
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