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Abstract— The method of complex networks has been pro-
posed as a novel approach to analyze time series from a
new perspective. However, only few studies have applied this
methodology to certain types of pseudo-periodic signals. In
this article, the network-based technique is applied on voice
signals, a kind of pseudo-periodic signals which has not been
analyzed using complex networks, to differentiate between a
healthy subject and subjects with pathological disorders. The
results obtained demonstrated that through a set of statistic
computed from the complex networks is possible to differentiate
between healthy and non-healthy subjects, contrary to what

was observed using well known non-linear statistics, such as
Lempel-Ziv complexity and sample entropy. We conclude that
by seeing voice signals as complex networks new information
can be extracted from the time series that may help in the
diagnosis of pathologies.

I. INTRODUCTION

Voice signals are graphical representations of sound waves

produced by the human vocal apparatus. They are mainly

used as support in the diagnosis of physiological conditions

of the vocal tract of a patient [1]. Also, voice signals have

been used in automatic speech recognition, to build machines

capable of understanding what a person says, and to make

machines able to express themselves clearly and concisely. It

is essential to note that voice signals are dynamic, sometimes

show transient behavior, and generally have non-stationary

properties, i.e., their statistical moments and probability

distribution are time-dependent [1]. In addition, evidence

suggests that voice signals represent a non-linear process [2].

There has been widespread interest in the feature extrac-

tion of voice signals to contribute to the development of

its application; several analytical techniques in the time,

frequency [3], and time-frequency [4] domains have been

used to fulfill this purpose. In particular, Mel frequency

Cepstral coefficients are one of the most employed [5]. Yet,

these previously mentioned methods require linearity [6], and

it has been proved that nonlinear techniques can extract more

information in voice signals than linear techniques [7].

Knowing that voice signals represent a non-linear process

[2] and that non-linear methods work better on extracting

information from these types of signals [7], there is an

overriding interest in developing new techniques to analyze

*D. Guarı́n was supported by the program “Jóvenes investigadores e
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this kind time series. One of those new techniques is the

transformation of signals into complex networks, an ap-

proach that holds a different view from the past and classical

practices [8], [9]. This complex network technique creates

a new way to visualize time series and therefore provides

a new insight into a wide range of concepts that can be

derived from this transformation [10], [11]. For example,

few studies have applied the network-based technique to

audio signals [12] or to pseudo-periodic signals [8], [13].

In [12] Yang et al. complex networks were constructed from

audio signals in order to distinguish different types of music.

Although, this aim was not achieved. In [13] Zangjie et al. the

complex network technique was applied to electrocardiogram

(ECG) signals; one ECG from a healthy patient and another

ECG from a patient with heart arrhythmia. In this study,

they obtained better results when differentiating between

both ECG signals with the complex network approach than

with classical techniques. This new practice was also able

to detect small differences among pseudo-periodic signals

which were not possible when working with more commonly

used methods [13].

In this article, the concept of complex networks is applied

to voice signals to distinguish between a voice signal from

a healthy subject and a voice signal from a pathological

subject. It is also intended to make a comparison with

well known non-linear features such as the Lempel-Ziv

complexity and the sample entropy so as to provide a factual

example of the power of this new approach to the analysis

of time series.

This document is organized as follows: in section II the

voice signal database is described, as well as the basic

idea behind the pseudo-periodic time series transformation

into complex networks, and the set of statistics applied

on the complex networks. In section III the procedure to

construct complex networks from voice signals is explained;

the methodology to apply the battery of statistics and the

results from these statistics are also depicted in this section.

Finally, conclusions are drawn and future work is proposed.

II. MATERIALS AND METHODS

A. Database

The voice signals employed in this study correspond to the

KayPENTAX database [14]. This database was developed by

the Massachusetts Eye and Ear Infirmary Voice and Speech

Laboratory; it consists of more than 1400 voice samples of

approximately 700 healthy subjects as well as those with a

pathological disorder. The recordings consist of the sustained

speech phoneme /ah/. All voice signals were recorded in a
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controlled environment, as follows: low ambient noise, fixed

length distance between the speaker and microphone, direct

digital sampling of 16− bit, robust signal conditioning, and

sampling frequency of 25 kHz or 50 kHz. Fig. 1 shows

three cycles of a voice signal from a healthy subject and

three cycles from a subject with a pathological disorder; both

signals were sampled at 25 kHz.

B. Complex Networks

To transform a pseudo-periodic time series into a complex

network, the procedure described in [8] and [13] is applied

into the pseudo-periodic voice signals. A brief description of

this process is as follows: start with a pseudo-periodic time

series (a voice signal in our case) {xi}
n

1
of n observations.

Divide the time signal into M suitable cycles, either from

maximum or minimum points of a cycle. Embed the M
cycled pseudo-periodic time signal using one of the standard

techniques, creating an attractor of {C1, C2, . . . , CM} cycles

embedded in m dimensions with an optimal delay τ (for

a more detailed explanation on embedding see [15]). Each

point in the m-dimensional space is considered as a point in

the complex network. Define K as the number of nodes to be

connected with each node in the complex network; keeping

in mind that for nodes to be connected they have to be close

to each other, but nodes from the same cycle Ci cannot be

considered as connected. Finally, create the complex network

with K-node connections.

C. Network Statistics on Complex Networks

1) Global Clustering Coefficient: The local clustering

coefficient of a node v depicts the density of connections

in the direct neighborhood of node v in terms of the density

of connections between all vertices that are incident with v
[16]:

Cv =
2

kv (kv − 1)
N∆

v , (1)

where N∆
v is the total number of closed triangles in-

cluding node v, which is limited by the maximum value

of kv (kv − 1) /2 (k refers to the degree of centrality, i.e.

the number of neighborhoods directly connected with the

node v). For isolated or treelike nodes (i.e., kv = 0 or 1) the

clustering coefficient is marked out as Cv = 0 by definition. If
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Fig. 1. a) Voice signal from healthy subject. b) Voice signal from subject
with pathological disorder.

a complex network has a high clustering coefficient, it reveals

a specific kind of structure in a network. This high clustering

coefficient has to do with the tendency to be associated with

only a selected group of nodes.

The global clustering coefficient represents the average

value of all the local clustering coefficients (N ) of the

complex network:

C =
1

N

N
∑

v=1

Cv. (2)

2) Assortativity: Assortativity refers to the tendency of a

node v with degree k to be connected with other nodes of

similar degree k. If nodes of degree k tend to be connected

with other nodes of degree k, then the complex network is

said to be assortative. Conversely, disassortative refers to the

tendency of nodes of degree k to be connected with nodes

of degree different than k [16].

Assortativity can be calculated using the Pearson corre-

lation coefficient of the node degrees on both ends of all

edges:

R =

1

L

∑

j>i kikjAi,j −
[

1

L

∑

j>i
1

2
(ki + kj)Ai,j

]2

1

L

∑

j>i
1

2

(

k2i + k2j
)

Ai,j −
[

1

L

∑

j>i
1

2
(ki + kj)Ai,j

]2
,

(3)

where L is the total number of edges in the recurrence

network and Ai,j is the number of nodes j 6= i that are

directly connected with i.
3) Path Length: The following assumption has to be made

in order to calculate the path length of a complex network:

complex networks are undirected and unweighted, i.e., all of

the edges of the network are assumed to be of unit length

in terms of geodesic distance. Now, the shortest path length

li,j is defined as the length of the distance between any two

vertices, i and j, of the complex network. The nomenclature

li,j in the network indicates the minimum number of edges

that have to be passed on a graph from a node i to a node

j [16].

Conversely, the average path length L is the mean value

of the shortest path lengths for all the pairs of vertices of the

complex network:

L = 〈li,j〉 =
2

N (N − 1)

∑

i<j

li,j . (4)

It is worth noting that li,j , the shortest path length, is

set to zero by definition for a disconnected pair of nodes;

nonetheless, this situation does not affect in a great manner

the statistic.

D. Other Non-linear Statistics

The following non-linear statistics have been selected in

this study because two of the authors proved that these non-

linear statistics can find differences among pseudo-periodic

signals [17]. Besides, a comparison is intended to be made

between these non-linear statistics and network statistics.
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1) Lempel-Ziv Complexity: (LZC) is an important non-

linear statistic capable of differentiating between several

states of a dynamical system. The complexity is a mea-

surement of the regularity of a symbolic sequence. Before

estimating the complexity from a time series, it is necessary

to convert it into a sequence of elements from a finite and

small set of symbols. The complexity is defined as the

number of sequences one observes in a symbolic sequence

as a fraction of the maximum number of sequences. The

maximum number of sequences that would be observed are

those observed for a random sequence of symbols [17].

2) Sample Entropy: (SampEn) is a measure based on

comparing patters within a time series to approximately

calculate its complexity through estimation of entropy rates.

Usually, the SampEn is calculated with the parameters sug-

gested for short data segments, i.e., L = 2, and ǫ = 20%
of the standard deviation of the observed time series. Higher

values of SampEn are associated with higher irregularity and

lower values of SampEn to a high degree of regularity [17].

III. RESULTS AND DISCUSSION

A. Cycle Selection

As described in II-A, the database consists of voice

recordings from healthy subjects as well as subjects with

a pathological disorder. To follow the procedure mentioned

in [8] and [13], voice signals have to be limited to an integer

number of pseudo-periodic cycles. To do this, the “Applied

Non-linear Time Series Analysis (ANTA)” Toolkit of Matlab

(The Mathworks Inc.) was used to find the local maximum

for each cycle [15]. Another parameter taken into account

was that the difference between the first and the last datum

(end-point mismatch) of the signal should be less than 1%
of the maximum value [15].

Ten signals from healthy subjects and ten signals from

subjects with pathological disorders were selected for this

preliminary study. The application of this method is straight-

forward for voice signals from healthy subjects, since the

pseudo-periods are well defined. However, for some voice

signals from subjects with pathological disorders this is not

the case. Therefore, the ten pathological signals were selected

given a visual identification of the pseudo-periods. Fig. 1

shows two signal with three noticeable cycles. Note that if

the cycles in the signal are not detectable then this method

cannot be applied.

B. Graphical Representation of a Complex Network

To create a graphical representation of a complex network,

one must first obtain the time delay embedding and the

embedding dimension of each voice signal. Then, a matrix

containing the node connections is created using the pre-

ceding parameters as well as the defined threshold K (60
neighbors in the attractor). It is important to keep in mind

that for embedding dimensions greater than 3, the visualized

complex network is a projection in only 3 dimensions. Due

to computational and visual limitations, complex networks

were created using three cycles for each voice signal. Fig. 2

displays four complex networks created using the software

Pajek [18], the two complex networks in the upper panel

correspond to healthy subjects while the ones in the lower

panel to subjects with pathological disorder. At a simple

glance one can tell a visual distinction between the complex

networks in the upper panel from the complex networks in

the lower panel. Also, if by comparison a complex network

seems to be more distributed than other, as in Fig. 2, then it

can be said that the underlying signal is more complex than

the other [11].

C. Application of Complex Network Statistics

To calculate the already-mentioned statistics in II-C, the

procedure differs from III-B in the number of cycles for the

creation of the correspondence matrix. In this case, 50 cycles

were chosen for each signal so as to generate correspondence

matrices. These signals vary in size from 5000 to 10000 data

points.

Fig. 3 shows the calculated values for the clustering

coefficient, assortativity and path length for healthy subjects

(+) as well as for subjects with pathological disorders (o).

As observed, the clustering coefficient can differentiate

between subjects and patients. Proving that the node con-

nections of the complex network derived from the healthy

subject are denser than those of a complex network coming

from a patient.

The difference seen in the clustering coefficient cannot be

noticed when referring to the assortativity. But, this result

was expected because all the networks were created with a

constant number of connections (K = 60). Furthermore, the

path length behaves in a similar way as the assortativity;

there is no difference between the two types of complex

network. But again, since both types of complex networks

were constructed using the same parameters, the path length

of all the complex networks is expected to be similar. This

could possibly mean that it is unimportant if the subject is

in a healthy or pathological state; these statistics depend on

the number of connected nodes.

With the intention of demonstrating how powerful the

theory of complex networks is with respect to traditional

approaches, Fig. 4 shows the values of the Lempel-Ziv

complexity and the sample entropy for both types of voice

Pajek Pajek

Pajek Pajek

Fig. 2. Upper panel: complex networks for healthy subjects. Lower panel:
complex networks for subjects with pathological disorder.
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Fig. 3. Clustering coefficient, assortativity and path length for the generated
complex networks. The plus sign (+) represents the calculated value for the
complex networks from healthy subjects, while the circle (o) from subjects
with pathological disorder.

signals. It can be seen that they are not able to distinguish

a healthy subject from a patient. One possible reason is

that the regularity (or irregularity) of both kind of signals

is considerable similar; because of the fact that voice signals

from subjects with pathological disorder were selected to

have a recognizable pseudo-periodic wave form. Another

probable cause is that both the Lempel-Ziv complexity and

the sample entropy were extracted with commonly used

parameters, as specified in II-D, which may not be the

adequate values for these particular types of voice signals.

IV. CONCLUSIONS

Through the technique of complex networks, a new repre-

sentation of voice signals was presented. This network-based

transformation provided alternative ways to analyze pseudo-

periodic signals. We demonstrated that using this novel tech-

nique is possible to differentiate voice signals from healthy

subjects and from patients; this may help in the diagnosis

of pathologies. Additionally to the extraction of quantitative

features through some statistics, complex networks present a

graphical interpretation that does intuitively depict a visual

distinction between healthy and non-healthy subjects.

From the battery of statistics applied to the complex net-

works generated from voice signals, the clustering coefficient

was able to entirely differentiate between the two types of

voice signals under analysis. Moreover, classical statistics

such as Lempel-Ziv complexity and sample entropy, could

not accomplish the same results. This discrepancy gives

the complex network approach more relevance among the

techniques to study time series, particularly pseudo-periodic

signals such as recordings of the human voice.

For future work, the complex network methodology could

be applied to a larger number of subjects. Also, subjects

could be divided into specific pathological disorders in order

to assess the capability of the network-based methodology

in making a distinction among different pathologies.
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V. Osma-Ruiz, and C. G. Castellanos-Domı́nguez, IEEE Transactions

on Biomedical Engineering, vol. 58, no. 2, pp. 370–379, 2011.
[8] J. Zhang and M. Small, Physical Review Letters, vol. 96, pp. 238 701–

1–238 701–4, 2006.
[9] M. Small, J. Zhang, and X. Xu, in Complex Sciences, J. Zhou, Ed.

Springer, 2009, vol. 2, pp. 2078–2089.
[10] X. Xu, J. Zhang, and M. Small, Proceedings of the National Academy

of Sciences, vol. 105, no. 50, pp. 19 601–19 605, 2008.
[11] R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. Xiang,

and J. Kurths, International Journal of Bifurcation and Chaos, vol. 21,
no. 4, pp. 1019–1046, 2011.

[12] Q. Yang, Q. Gao, and R. Fan, in 2nd International Conference on

Intelligent Control and Information Processing, Harbin, 2011, pp.
929–930.

[13] J. Zhang, J. Sun, X. Luo, K. Zhang, T. Nakamura, and M. Small,
Physica D, vol. 237, pp. 2856–2865, 2008.

[14] KayPENTAX, “Disordered voice database and program, model 4337,”
Web: http://www.kayelemetrics.com/.

[15] M. Small, Applied nonlinear time series analysis : Applications in

physics, physiology and finance. World Scientific Publishing, 2005.
[16] R. V. Donner, Y. Zou, J. F. Donges, N. Marwan, and J. Kurths, New

Journal of Physics, vol. 12, pp. 1–40, 2010.
[17] D. L. Guarı́n, , and A. A. Orozco, in The 11th International Confer-

ence on Information Science, Signal Processing and their Applications,

ISSPA, Montreal, QC, Canada, 2012, (To appear).
[18] V. Batagelj, A. Mrvar, and M. Zaveršnik, “Pajek,” [Software]. Avail-
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